Olorofim (formerly F901318) is an advanced analog of the orotomide class that inhibits fungal pyrimidine biosynthesis. We evaluated the and activities of olorofim against species. activity was assessed against 59 clinical isolates. Central nervous system infections were established in mice via intracranial inoculation with arthroconidia. Oral therapy began 48 h postinoculation and consisted of vehicle control, olorofim daily doses of 20 mg/kg (6.67 mg/kg three times daily or 10 mg/kg twice daily) or 40 mg/kg (13.3 mg/kg three times daily or 20 mg/kg twice daily), or fluconazole (25 mg/kg twice daily). Treatment continued for 7 and 14 days in the fungal burden and survival arms, respectively. Fungal burdens were assessed by CFU counts in brains. Olorofim demonstrated potent activity (MIC range, ≤0.008 to 0.06 μg/ml). Survival was significantly enhanced in mice treated with olorofim. Reductions in brain tissue fungal burdens were also observed on day 9 in the olorofim-treated groups. Improvements in survival and reductions in fungal burdens also occurred with fluconazole. More frequent dosing of olorofim was associated with enhanced survival and greater reductions in fungal burdens. In the group treated with 13.3 mg/kg olorofim three times daily, fungal burdens remained low on day 30 (15 days after treatment was stopped), with undetectable levels in 7 of 10 mice. In contrast, fungal burdens rebounded in all other groups after therapy stopped. Olorofim was highly active and against These results demonstrate that olorofim may have a role in the treatment of coccidioidomycosis.
Candida aurisis an emerging pathogen associated with significant mortality and often multidrug resistance. VT-1598, a tetrazole-based fungal CYP51-specific inhibitor, was evaluatedin vitroandin vivoagainstC. auris. Susceptibility testing was performed against 100 clinical isolates ofC. aurisby broth microdilution. Neutropenic mice were infected intravenously withC. auris, and treatment began 24 h postinoculation with a vehicle control, oral VT-1598 (5, 15, and 50 mg/kg of body weight once daily), oral fluconazole (20 mg/kg once daily), or intraperitoneal caspofungin (10 mg/kg once daily), which continued for 7 days. Fungal burden was assessed in the kidneys and brains on day 8 in the fungal burden arm and on the days the mice succumbed to infection or on day 21 in the survival arm. VT-1598 plasma trough concentrations were also assessed on day 8. VT-1598 demonstratedin vitroactivity againstC. auris, with a mode MIC of 0.25 μg/ml and MICs ranging from 0.03 to 8 μg/ml. Treatment with VT-1598 resulted in significant and dose-dependent improvements in survival (median survival, 15 and >21 days for VT-1598 at 15 and 50 mg/kg, respectively) and reductions in kidney and brain fungal burden (reductions of 1.88 to 3.61 log10CFU/g) compared to the control (5 days). The reductions in fungal burden correlated with plasma trough concentrations. Treatment with caspofungin, but not fluconazole, also resulted in significant improvements in survival and reductions in fungal burden compared to those with the control. These results suggest that VT-1598 may be a future option for the treatment of invasive infections caused byC. auris.
The emerging pathogenic yeast Candida auris is associated with antifungal resistance and high mortality. The novel antifungal agent manogepix (APX001A) inhibits glycosylphosphatidylinositol-anchored protein maturation and has demonstrated activity against numerous pathogenic fungi, including C. auris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.