Since tracheal traction decreased PTMlat and PTMant by a greater amount than ETPlat and ETPant, we conclude that the decrease in upper airway collapsibility mediated by lung volume related caudal tracheal traction is partially explained by reductions in ETP.
Lowering surface tension (gamma) of upper airway lining liquid (UAL) reduces upper airway opening (anesthetized humans) and closing (anesthetized rabbits) pressures. We now hypothesize that in sleeping obstructive sleep apnea hypopnea syndrome (OSAHS) patients lowering gamma of UAL will enhance upper airway stability and decrease the severity of sleep-disordered breathing. Nine OSAHS patients [respiratory disturbance index (RDI): 49 +/- 8 (SE) events/h, diagnostic night] participated in a two-part, one-night, polysomnography study. In the first part, upper airway closing pressures (during non-rapid eye movement sleep, Pcrit) were measured and samples of UAL (awake) were obtained before and after 2.5 ml of surfactant (Exosurf, Glaxo Smith Kline) was instilled into the posterior pharynx. The gamma of UAL was determined with the use of the "pull-off" force technique. In the second part, subjects received a second application of 2.5 ml of surfactant and then slept the remainder of the night (205 +/- 30 min). Instillation of surfactant decreased the gamma of UAL from 60.9 +/- 3.1 mN/m (control) to 45.2 +/- 2.5 mN/m (surfactant group) (n = 9, P < 0.001). Pcrit decreased from 1.19 +/- 1.14 cmH2O (control) to -0.56 +/- 1.15 cmH2O (surfactant group) (n = 7, P < 0.02). Compared with the second half of diagnostic night, surfactant decreased RDI from 51 +/- 8 to 35 +/- 8 events/h (n = 9, P < 0.03). The fall in RDI (deltaRDI) correlated with the fall in gamma of UAL (deltagamma) (deltaRDI = 1.8 x deltagamma, r = 0.68, P = 0.04). Hypopneas decreased approximately 50% from 42 +/- 8 to 20 +/- 5 events/h (n = 9, P < 0.03, paired t-test). The gamma of UAL measured the next morning remained low at 49.5 +/- 2.7 mN/m (n = 9, P < 0.001, ANOVA, compared with control). In conclusion, instillation of surfactant reduced the gamma of UAL in OSAHS patients and decreased Pcrit and the occurrence of hypopneas. Therapeutic manipulation of gamma of UAL may be beneficial in reducing the severity of sleep-disordered breathing in OSAHS patients.
The pharyngeal airway can be considered as an airway luminal shape formed by surrounding tissues, contained within a bony enclosure formed by the mandible, skull base, and cervical vertebrae. Mandibular advancement (MA), a therapy for obstructive sleep apnea, is thought to increase the size of this bony enclosure and to decrease the pressure in the upper airway extraluminal tissue space (ETP). We examined the effect of MA on upper airway airflow resistance (Rua) and ETP in a rabbit model. We studied 11 male, supine, anesthetized, spontaneously breathing New Zealand White rabbits in which ETP was measured via pressure transducer-tipped catheters inserted into the tissues surrounding the lateral (ETPlat) and anterior (ETPant) pharyngeal wall. Airflow, measured via surgically inserted pneumotachograph in series with the trachea, and tracheal pressure were recorded while graded MA at 75 degrees and 100 degrees to the horizontal was performed using an external traction device. Data were analyzed using a linear mixed-effects statistical model. We found that MA at 100 degrees increased mouth opening from 4.7 +/- 0.4 to 6.6 +/- 0.4 (SE) mm (n = 7; P < 0.004), whereas mouth opening did not change from baseline (4.0 +/- 0.2 mm) with MA at 75 degrees . MA at both 75 degrees and 100 degrees decreased mean ETPlat and ETPant by approximately 0.1 cmH2O/mm MA (n = 7-11; all P < 0.0005). However, the fall in Rua (measured at 20 ml/s) with MA was greater for MA at 75 degrees (approximately 0.03 mmH2O.ml(-1).s.mm(-1)) than at 100 degrees (approximately 0.01 mmH2O.ml(-1).s.mm(-1); P < 0.02). From these findings, we conclude that MA decreases ETP and is more effective in reducing Rua without mouth opening.
Transmural pressure at any level in the upper airway is dependent on the difference between intraluminal airway and extraluminal tissue pressure (ETP). We hypothesized that ETP would be influenced by topography, head and neck position, resistive loading, and stimulated breathing. Twenty-eight male, New Zealand White, anesthetized, spontaneously breathing rabbits breathed via a face mask with attached pneumotachograph to measure airflow and pressure transducer to monitor mask pressure. Tidal volume was measured via integration of the airflow signal. ETP was measured with a pressure transducer-tipped catheter inserted in the tissues of the lateral (ETPlat, n = 28) and anterior (ETPant, n = 21) pharyngeal wall. Head position was controlled at 30, 50, or 70 degrees, and the effect of addition of an external resistor, brief occlusion, or stimulated breathing was examined. Mean ETPlat was approximately 0.7 cmH2O greater than mean ETPant when adjusted for degree of head and neck flexion (P < 0.05). Mean, maximum, and minimum ETP values increased significantly by 0.7-0.8 cmH2O/20 degrees of head and neck flexion when adjusted for site of measurement (P < 0.0001). The main effect of resistive loading and occlusion was an increase in the change in ETPlat (maximum - minimum ETPlat) and change in ETPant at all head and neck positions (P < 0.05). Mean ETPlat and ETPant increased with increasing tidal volume at head and neck position of 30 degrees (all P < 0.05). In conclusion, ETP was nonhomogeneously distributed around the upper airway and increased with both increasing head and neck flexion and increasing tidal volume. Brief airway occlusion increased the size of respiratory-related ETP fluctuations in upper airway ETP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.