Inflammation plays a major role in the onset and development of chronic non-communicable diseases like obesity, cardiovascular diseases and cancer. Combined, these diseases represent the most common causes of death worldwide, thus development of novel pharmacological approaches is crucial. Electrophilic nitroalkenes derived from fatty acids are formed endogenously and exert anti-inflammatory actions by the modification of proteins involved in inflammation signaling cascades. We have developed novel nitroalkenes derived from α-tocopherol aiming to increase its salutary actions by adding anti-inflammatory properties to a well-known nutraceutical. We synthesized and characterized an α-tocopherol-nitroalkene (NATOH) and two hydrosoluble analogues derived from Trolox (NATxME and NATx0). We analyzed the kinetics of the Michael addition reaction of these compounds with thiols in micellar systems aiming to understand the effect of hydrophobic partition on the reactivity of nitroalkenes. We studied NATxME in vitro showing it exerts non-conventional anti-inflammatory responses by inducing Nrf2-Keap1-dependent gene expression and inhibiting the secretion of NF-κB dependent pro-inflammatory cytokines. NATxME was also effective in vivo, inhibiting neutrophil recruitment in a zebrafish model of inflammation. This work lays the foundation for the rational design of a new therapeutic strategy for the prevention and treatment of metabolic and inflammation-related diseases.
A one-pot efficient, practical and eco-friendly synthesis of tocopherol analogues has been developed using water or solvent free conditions via Passerini and Ugi multicomponent reactions. These reactions can be optimized using microwave irradiation or ultrasound as the energy source. Accordingly, a small library of 30 compounds was prepared for biological tests. The evaluation of the antiproliferative activity in the human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D (breast), and WiDr (colon) provided lead compounds with GI values between 1 and 5 μM. A structure-activity relationship is also discussed. One of the studied compounds comes up as a future candidate for the development of potent tocopherol-mimetic therapeutic agents for cancer.
Herein we describe a salicylaldehyde-annulation reaction as a plug and play toolkit to diversify the complexity of naturally occurring ketones. The protocol entails the transformation of the polycyclic natural ketone into its propargyl vinyl ether derivative (two synthetic steps) and its microwave-assisted imidazole-catalyzed domino rearrangement to generate the salicylaldehyde ring. This annexed unit allows further synthetic transformations: e.g., the installation of a pharmacophore module to generate natural product-pharmacophore hybrids endowed with unknown biological (pharmaceutical) annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.