BackgroundThe polymerase chain reaction (PCR) has been proposed for diagnosis, staging and post-treatment follow-up of sleeping sickness but no large-scale clinical evaluations of its diagnostic accuracy have taken place yet.Methodology/Principal FindingsAn 18S ribosomal RNA gene targeting PCR was performed on blood and cerebrospinal fluid (CSF) of 360 T. brucei gambiense sleeping sickness patients and on blood of 129 endemic controls from the Democratic Republic of Congo. Sensitivity and specificity (with 95% confidence intervals) of PCR for diagnosis, disease staging and treatment failure over 2 years follow-up post-treatment were determined. Reference standard tests were trypanosome detection for diagnosis and trypanosome detection and/or increased white blood cell concentration in CSF for staging and detection of treatment failure. PCR on blood showed a sensitivity of 88.4% (84.4–92.5%) and a specificity of 99.2% (97.7–100%) for diagnosis, while for disease staging the sensitivity and specificity of PCR on cerebrospinal fluid were 88.4% (84.8–91.9%) and 82.9% (71.2–94.6%), respectively. During follow-up after treatment, PCR on blood had low sensitivity to detect treatment failure. In cerebrospinal fluid, PCR positivity vanished slowly and was observed until the end of the 2 year follow-up in around 20% of successfully treated patients.Conclusions/SignificanceFor T.b. gambiense sleeping sickness diagnosis and staging, PCR performed better than, or similar to, the current parasite detection techniques but it cannot be used for post-treatment follow-up. Continued PCR positivity in one out of five cured patients points to persistence of living or dead parasites or their DNA after successful treatment and may necessitate the revision of some paradigms about the pathophysiology of sleeping sickness.
ObjectivesRecently, improvements have been made to diagnostics for gambiense sleeping sickness control but their performance remains poorly documented and may depend on specimen processing prior to examination. In a prospective study in the Democratic Republic of the Congo, we compared the diagnostic performance of several parasite detection techniques, immune trypanolysis and of m18S PCR on whole blood stored in a stabilisation buffer or dried on filter paper.MethodsIndividuals with CATT whole blood (WB) titer ≥1∶4 or with clinical signs indicative for sleeping sickness were examined for presence of trypanosomes in lymph node aspirate (LNA) and/or in blood. Blood was examined with Capillary Centrifugation Technique (CTC), mini-Anion Exchange Centrifugation Technique (mAECT) and mAECT on buffy coat (BC). PCR was performed on whole blood (i) stored in guanidine hydrochloride EDTA (GE) stabilisation buffer and (ii) dried on filter paper, and repeatability and reproducibility were assessed. Immune trypanolysis (TL) was performed on plasma.ResultsA total of 237 persons were included. Among 143 parasitologically confirmed cases, 85.3% had a CATT-WB titre of ≥1/8, 39.2% were positive in LNA, 47.5% in CTC, 80.4% in mAECT-WB, 90.9% in mAECT-BC, 95.1% in TL and up to 89.5% in PCR on GE-stabilised blood. PCR on GE-stabilised blood showed highest repeatability (87.8%) and inter-laboratory reproducibility (86.9%). Of the 94 non-confirmed suspects, respectively 39.4% and 23.4% were TL or PCR positive. Suboptimal specificity of PCR and TL was also suggested by latent class analysis.ConclusionThe combination of LNA examination with mAECT-BC offered excellent diagnostic sensitivity. For PCR, storage of blood in stabilisation buffer is to be preferred over filter paper. TL as well as PCR are useful for remote diagnosis but are not more sensitive than mAECT-BC. For TL and PCR, the specificity, and thus usefulness for management of non-confirmed suspects remain to be determined.
BackgroundThe polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) have been recently modified by coupling to oligochromatography (OC) for easy and fast visualisation of products. In this study we evaluate the sensitivity and specificity of the PCR-OC and NASBA-OC for diagnosis of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense human African trypanosomiasis (HAT).Methodology and ResultsBoth tests were evaluated in a case-control design on 143 HAT patients and 187 endemic controls from the Democratic Republic of Congo (DRC) and Uganda. The overall sensitivity of PCR-OC was 81.8% and the specificity was 96.8%. The PCR-OC showed a sensitivity and specificity of 82.4% and 99.2% on the specimens from DRC and 81.3% and 92.3% on those from Uganda. NASBA-OC yielded an overall sensitivity of 90.2%, and a specificity of 98.9%. The sensitivity and specificity of NASBA-OC on the specimens from DRC was 97.1% and 99.2%, respectively. On the specimens from Uganda we observed a sensitivity of 84.0% and a specificity of 98.5%.Conclusions/SignificanceThe tests showed good sensitivity and specificity for the T. b. gambiense HAT in DRC but rather a low sensitivity for T. b. rhodesiense HAT in Uganda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.