Diabetes mellitus is one of the urgent health problems in the world. Diabetes is a condition primarily defined by the level of hyperglycemia giving rise to risk of micro vascular damage. Those who suffer from this disease generally do not realize and tend to overlook the early symptoms. Late recognition of these early symptoms may drive the disease to a more concerning level. One solution to solve this problem is to create an application that may perform early detection of diabetes mellitus so that it does not grow larger. In this article, a new method in performing early detection of diabetes mellitus is suggested. This method is backpropagation with three optimization namely early initialization with Nguyen-Widrow algorithm, learning rate adaptive determination, and determination of weight change by applying momentum coefficient. The observation is conducted by collecting 150 data consisting of 79 diabetes mellitus patient and 71 non diabetes mellitus patient data. The result of this study is the suggested algorithm succeeds in detecting diabetes mellitus with accuracy rate of 99.33%. Optimized backpropagation algorithm may allow the training process goes 12.4 times faster than standard backpropagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.