We investigated whether secretion of multiple cytokines by CD8+ T cells is associated with improved protection against tumor challenge. We show that antitumor immunity induced by immunization with dendritic cells and a MHC class I-binding tumor peptide are dependent on secretion of IFN-γ but not IL-4 or IL-5 by host cells. To further address the role of IL-4 and IL-5 in antitumor immunity, tumor-specific TCR-transgenic CD8+ T cells were activated in vitro to generate cytotoxic T (Tc) 1 cells that secrete high IFN-γ and no IL-4 or IL-5 or Tc2 cells that secrete IL-4, IL-5, and some IFN-γ. Both cell types killed target cells in vitro. Tc1 and Tc2 cells were adoptively transferred into syngeneic hosts, and their ability to protect against tumor challenge was compared. Tc1 cells were able to significantly delay tumor growth, whereas Tc2 cells or Tc2 cells from IFN-γ−/− donors had no effect. This was due to neither the inability of Tc2 cells to survive in vivo or to migrate to the tumor site nor their inability to secrete IL-4 and/or IL-5 in the presence of limiting amounts of anti-CD3. However, IFN-γ secretion by Tc2 cells was triggered inefficiently by restimulation with Ag compared with anti-CD3. We conclude that the ability to secrete “type 2” cytokines, and cytotoxic ability, have a limited role in antitumor immune responses mediated by CD8+ T cells, whereas the capacity to secrete high amounts of IFN-γ remains the most critical antitumor effector mechanism in vivo.
An important subdivision of effector T cells can be made based on patterns of cytokine production and functional programs. Type 1 T cells produce IFN-γ and protect against viral pathogens, whereas type 2 cells produce cytokines such as IL-4 and IL-5 and protect against large extracellular parasites. Both CD4+ and CD8+ T cells can be polarized into type 1 or type 2 cytokine-secreting cells, suggesting that both populations play a regulatory role in immune responses. In this study, we used high-density oligonucleotide arrays to produce a comprehensive picture of gene expression in murine CD4+ Th1 and Th2 cells, as well as CD8+ type 1 and type 2 T cells. Polarized type 1 and 2 cells transcribed mRNA for an unexpectedly large number of genes, most of which were expressed in a similar fashion between type 1 and type 2 cells. However, >100 differentially expressed genes were identified for both the CD4+ and CD8+ type 1 and 2 subsets, many of which have not been associated with T cell polarization. These genes included cytokines, transcription factors, molecules involved in cell migration, as well as genes with unknown function. The program for type 1 or type 2 polarization was similar for CD4+ and CD8+ cells, since gene expression patterns were roughly the same. The expression of select genes was confirmed using real-time PCR. The identification of genes associated with T cell polarization may give important insights into functional and phenotypic differences between effector T cell subsets and their role in normal responses and inflammatory disease.
Chronic infections often result in CD8 T-cell deletion or functional nonresponsiveness. However, to date no definitive studies have attempted to determine the impact of repeated T cell receptor stimulation on CD4 effector T cell generation. We have determined that when antigen presentation is limited to 2 d, optimum in vitro CD4 effector generation is achieved. Alternatively, repeated stimulation results in decreased CD4 effector expansion, decreased cytokine production, and altered migration. Similarly, functionally impaired effectors develop in vivo when antigen-pulsed antigen-presenting cells are replenished every 24 h during a primary immune response. CD4 effectors that are generated with repeated stimulation provide no protection during influenza infection, and have an impaired ability to provide cognate help to B cells. These results suggest that duration of antigen presentation dictates CD4 effector function, and repeated T cell receptor stimulation in vitro and in vivo that exceeds an optimal threshold results in effectors with impaired function.
The frequency of circulating or tumour-infiltrating regulatory T cells (Tregs) has been associated with poor patient survival in many cancers including breast, melanoma and lung. It has been hypothesised that Tregs impact the anti-tumour function of effector T cells, resulting in worse outcomes for patients. However, high infiltrates of Tregs have been associated with a positive outcome of patients in a minority of cancers including colorectal, bladder and oesophageal. In addition, many studies have shown no impact of Tregs in patient outcome. Traditionally, research has identified Tregs as forkhead box P3 (FOXP3+) T cells in order to make such associations. Recently, it has become evident that regulatory populations are very heterogeneous, and this heterogeneity is essential for Treg function. Treg heterogeneity likely affects predictions of patient outcome, and different Treg populations may have different influences on tumours. The study of Tregs in cancer must include a better definition of the cells analysed. This review will focus primarily on colorectal cancer in humans, due to mixed data on the impact of Tregs on patient outcome in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.