We previously identified ONC201 (TIC10) as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL) was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of th...
TNF-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapy that selectively targets cancer cell death while non-malignant cells remain viable. Using a panel of normal human fibroblasts, we characterized molecular differences in human foreskin fibroblasts and WI-38 TRAIL-resistant cells and marginally sensitive MRC-5 cells compared with TRAILsensitive human lung and colon cancer cells. We identified decreased caspase-8 protein expression and protein stability in normal fibroblasts compared with cancer cells. Additionally, normal fibroblasts had incomplete TRAIL-induced caspase-8 activation compared with cancer cells. We found that normal fibroblasts lack the ubiquitin modification of caspase-8 required for complete caspase-8 activation. Treatment with the deubiquitinase inhibitor PR-619 increased caspase-8 ubiquitination and caspase-8 enzymatic activity and sensitized normal fibroblasts to TRAIL-mediated apoptosis. Therefore, posttranslational regulation of caspase-8 confers resistance to TRAIL-induced cell death in normal cells through blockade of initiation of the extrinsic cell death pathway. TNF-related apoptosis inducing ligand (TRAIL)3 is a member of the TNF family and has cytotoxic effects against various cancer cells but causes little or no toxicity to non-malignant normal cells (1, 2). The selective killing of cancer cells has made TRAIL an exciting cancer target, and the clinical use of TRAIL is currently being explored (3, 4). TRAIL can bind to five receptors. Death receptor 4 (DR4) (5) and death receptor 5 (DR5) (6) are death domain-containing, proapoptotic TRAIL receptors. Decoy receptor 1 (DcR1) and decoy receptor 2 (DcR2) are decoy receptors that are incapable of TRAIL-induced cell death signaling because of truncated or nonfunctional death domains (7-10). Osteoprotegerin is a soluble decoy TRAIL receptor (11). TRAIL/TRAIL receptor ligation causes receptor trimerization and recruitment of the intracellular adaptor protein Fas-associated death domain. Caspase-8 is also recruited and interacts with Fas-associated death domain in a complex referred to as the death-inducing signaling complex (12). Death-inducing signaling complex activation of caspase-8 leads to activation of effector caspases, including caspase-3, resulting in cell death (12). TRAIL can also activate the intrinsic death pathway and lead to mitochondrial permeabilization and release of proapoptotic factors, including cytochrome c, and activation of initiator caspase-9. Activated caspase-9 can then activate caspase-3, causing cell death (12).Not all cancer cells are susceptible to TRAIL-mediated cell death. TRAIL sensitivity in cancer cells has been studied extensively, and several resistance mechanisms have been defined. Altered DR4 and DR5 posttranslational modifications, including glycosylation (13, 14), abnormal TRAIL receptor transport to the cell surface (15), TRAIL receptor endocytosis (16), recruitment of the enzymatically inactive caspase-8 homologue FLICE-inhibitory protein (FLIP) to the death-inducing signali...
Death Receptor 5 (DR5) induces apoptosis in various types of cells and is a potential therapeutic target. We have investigated whether targeting DR5 could be used to eliminate pathogenic B lymphocytes from systemic lupus erythematosus (SLE) patients. We examined DR5 expression and function on B lymphocytes from healthy controls subjects, SLE patients, and human tonsil. DR5 was expressed similarly on all B cell subpopulations, including resting and activated B cells. Expression of DR5 was equivalent on B cells from SLE patients and healthy subjects. Additionally, DR5 expression was unchanged after B lymphocyte stimulation. However, B cells were resistant to DR5-induced apoptosis, including after in vitro activation. No changes in subsets of B cells were observed in subjects of a trial of CS-1008, an agonist anti-DR5. While DR5 shows promise as a way to selectively eliminate tumor cells and activated synoviocytes, these data suggest DR5 alone cannot be used as a target to remove pathogenic SLE B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.