Pada penelitian ini bertujuan untuk melakukan komparasi terhadap metode Naïve Bayes dan Random Forest dalam klasifikasi data pasien penyakit liver. Adapun data pengujian yang digunakan yaitu Indian Liver Patient Dataset (ILPD) yang diperoleh dari UCI Machine Learning Repository. Dataset tersebut memiliki 583 record data, 10 kriteria, dan 1 variable kelas serta dengan jumlah kelas sebanyak 2 kelas atribut, serta data set tersebut berjenis multivariate. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain normalisasi data yang diujikan, selanjutnya dilakukan analisis klasifikasi menggunakan metode naïvebayes dan random forest. Berdasarkan hasil pengujian yang dilakukan dalam memperoleh nilai akurasi perhitungan klasifikasi menggunakan Confusion Matrix, maka metode Random Forest memperoleh hasil yang terbaik yaitu dengan peroleh akurasi sebesar 70.60 % bila dibandingkan dengan Naïve Bayes yang hanya memperoleh akurasi sebesar 55.80 %. Sehingga Random Forest memiliki performa kinerja yang lebih unggul dalam perolehan akurasi yang dihasilkan dalam klasifikasi penyakit liver.
Stocks are one of the many investments that are favored by all groups because they promise high returns. But in addition to promising high returns, stocks can also provide a high risk of loss, which makes ordinary people afraid to start investing in the stock market. To prevent losses in buying stocks is to choose stocks with good fundamentals. To support this, we need an analysis that can help make decisions in choosing the best stocks in the technology sector. The saw method analysis will be used in this study, where the saw method is able to select alternatives based on predetermined categories. This study will rank the best stocks based on company fundamentals, namely EPS, PER, PBV, ROE, DER and Dividend Yield. The results of this study are EDGE stocks as the best stocks in the technology sector with the highest value of 0.88. The purpose of this research is to help investors choose stocks before investing in technology companies.
Perancangan dan pembangunan sistem informasi manajemen berbasis website pada Masjid Taqwa Al-Falah Ranting Muhammadiyah Pasar VII Tembung didasari atas hasil wawancara dengan Pimpinan Ranting Muhammadiyah Pasar VII Tembung yang dimana memiliki permasalahan dalam melakukan pendataan keanggotaan, serta transparansi laporan keuangan. Maka dengan membangun sebuah Sistem berbasis Website yang nantinya dapat memberikan manfaat bagi Masjid Taqwa Al-Falah Ranting Muhammadiyah Pasar VII Tembung dalam pengelolaan informasi kegiatan, penyimpanan database keanggotaan, serta pencatatan dokumen dan laporan keuangan. Dengan adanya Sistem Informasi Manajemen tentunya memberikan kemudahan yang dapat membantu menyelesaikan permasalahan pengelolaan informasi pada Masjid Taqwa Al-Falah Ranting Muhammadiyah Pasar VII Tembung.
Contract employees are employees who work in contact with a certain time agreement. However, there are times when contact employees with good performance will change their status to permanent employees. To determine whether an employee is a permanent employee, an evaluation of whether the employee's performance is worthy of being appointed as a permanent employee is required. However, to carry out this evaluation, a variable is needed to make an assessment. In the performance evaluation it is not easy to determine the value of each variable. To assist an HRD in determining the appointment of a contact employee to become a permanent employee, a decision support system is needed to facilitate HRD work. The decision support system is made using the Tsukamoto fuzzy logic method because the Tsukamoto fuzzy has a tolerance for value data. The result of the research is that the employee can be appointed as a permanent employee with a value of 93.4. The purpose of this decision support system is to determine whether or not contract employees are eligible to become permanent employees based on alternative disciplines, ways of working and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.