BackgroundMany types of shellfish including oysters are sometime cooked before ingestion and it has been demonstrated that cooking may affect the allergenicity of food. Therefore, the aim of our present study is to identify major and minor allergens of tropical oyster (Crassostrea belcheri) and to investigate the effect of different cooking processing on the allergenicity of this oyster.MethodsRaw, boiled, fried and roasted extracts of oyster were prepared. Protein profiles were analysed using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). Major and minor allergens and allergenicity patterns of all extracts were then determined by immunoblotting with sera from patients with positive skin prick tests (SPT) to the raw oyster extract. Mass-spectrometry was used to identify the major allergenic proteins of this oyster.ResultsSDS-PAGE of the raw extract showed 15 protein bands (20–180 kDa). In contrast, smaller numbers of protein bands were demonstrated in the boiled extract, those ranging between 40–42 and 55–150 kDa were denatured, whereas the protein profiles were altered to a similar degree by frying or roasting. The 37 kDa proteins had the highest frequency of IgE-binding (95 %), thus identified as the major allergen of this tropical oyster. Other minor IgE-binding proteins were observed at various molecular weights. Immunoblot of raw extract yielded 11 IgE-binding proteins. The cooked extracts showed only a single IgE-binding protein at 37 kDa. Mass spectrometry analysis of the 37 kDa major allergen identified this spot as tropomyosin.ConclusionsCooked extracts produce lower IgE-binding than raw extract, which suggest that thermal treatment can be used as a tool in attempting to reduce oyster allergenicity by reducing the number of IgE-reactive bands. The degree of allergenicity of this oyster was demonstrated in the order raw > boiled > fried ≈ roasted. A heat-resistent 37 kDa protein, corresponding to tropomyosin, was identified as the major allergen of this tropical oyster.
Background: The longtail tuna (Thunnus tonggol) is widely consumed in Asia. Parvalbumin, the main major allergen of fish, has been well identified in multiple fish species, yet little is known about the allergenic proteins in T. tonggol. Thus, the aim of this study was to characterize the major allergens of T. tonggol using a proteomics approach. Methods: Raw and boiled extracts of the fish were prepared. Fish proteins were separated by means of SDS-PAGE and two-dimensional (2-DE) electrophoresis. 1-DE immunoblotting of raw extract was performed with sera from fish-allergic patients. Ten sera were further analysed by 2-DE immunoblotting. Selected major allergenic protein spots were excised, trypsin digested and analysed by means of mass spectrometry. Results: SDS-PAGE of raw extract revealed 26 protein fractions, while boiled extract demonstrated fewer bands. The 2-DE gel profile of the raw extract further fractionated the protein bands to more than 100 distinct protein spots. 1-DE immunoblotting of raw extract exhibited two thermolabile protein fractions of 42 and 51 kDa as the major allergens, while the boiled extract only revealed a single IgE-binding band at 151 kDa. 2-DE immunoblotting of raw extract further detected numerous major IgE-reactive spots of 11-13, 42 and 51 kDa. Mass spectrometry analysis of the peptides generated from the 12, 42 and 51 kDa digested spots indicated that these spots were parvalbumin, creatine kinase and enolase, respectively. Conclusions: In addition to parvalbumin, two new thermolabile allergens were identified as major allergenic proteins of T. tonggol. This study proved that both thermostable and thermolabile proteins are important in local tuna allergy and should be included in diagnostic strategies.
In Malaysian and certain Asian countries, snail has high market demand and popular to the local people as food. However, snail is also frequently reported as one of the worst food allergens, dominated by severe symptoms such as asthma and anaphylactic shock. Thus, the aims of this study is to determine the allergenicity of two species of edible snails; the local sea snail, Cerithidea obtusa and the freshwater snail Pomacea canaliculata. Snail extracts were prepared from the snail flesh and analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to determine their protein profiling. Allergenic proteins were detected by immunoblotting test using sera from 10 snail-allergic patients. The snails contain 31 to 34 protein fractions between 11 to >250 kDa. The prominent bands were seen at 33, 42, 74 and 250 kDa. Immunoblotting detected 15 and 16 allergenic proteins in C. obtusa and P. canaliculata, respectively. Three protein fractions at 30, 33 and 42 kDa were identified as the major allergens of C. obtusa, while six major allergens at 30, 33, 42, 74, 124 and 218 kDa were detected in P. canaliculata. Various minor allergens were also detected in both snails. This study indicated that numerous proteins of C. obtusa and P. canaliculata were allergenic. Thus, combined allergen extracts of both snails are essential to be included in diagnosis of snail allergy among local allergic patients.
Objectives. To identify the major allergenic proteins of clam (Paphia textile) and to investigate the effect of different cooking methods on the allergenicity of these identified proteins. Methods. Clam protein extracts were separated by denaturing polyacrylamide gel electrophoresis. IgE reactive proteins were then analyzed by immunoblotting with sera from patients with positive skin prick tests (SPT) to the raw clam extract. Mass spectrometry was used to identify the major allergenic proteins of this clam. Results. Raw extract showed 12 protein bands (18–150 kDa). In contrast, fewer protein bands were seen in the boiled extract; those ranging from 40 to 150 kDa were denatured. The protein profiles were similarly altered by frying or roasting. The immunoblots of raw and boiled extracts yielded 10 and 2 IgE-binding proteins, respectively. The fried and roasted extracts showed only a single IgE-binding protein at 37 kDa. Mass spectrometry analysis of the 37 and 42 kDa major allergens indicated that these spots were tropomyosin and actin, respectively. Conclusion. The two major allergens of Paphia textile were identified as the thermostable tropomyosin and a new thermolabile allergen actin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.