Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G 2 -M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G 2 -M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC. Cancer Res; 75(20); 4416-28. Ó2015 AACR.
In addition to postoperative R-status, an elevated NLR is also a valuable prognostic marker in patients undergoing chemoradiation for locally advanced rectal carcinoma. It is associated with worse OS, TTLR and DFS. An elevated NLR may be a useful additional tool in guiding the decision-making process for adjuvant or neoadjuvant therapies.
Glioblastoma (GBM) is a lethal primary brain tumor characterized by treatment resistance and inevitable tumor recurrence, both of which are driven by a subpopulation of GBM cancer stem-like cells (GSC) with tumorigenic and self-renewal properties. Despite having broad implications for understanding GSC phenotype, the determinants of upregulated DNA-damage response (DDR) and subsequent radiation resistance in GSC are unknown and represent a significant barrier to developing effective GBM treatments. In this study, we show that constitutive DDR activation and radiation resistance are driven by high levels of DNA replication stress (RS). CD133 GSC exhibited reduced DNA replication velocity and a higher frequency of stalled replication forks than CD133 non-GSC ; immunofluorescence studies confirmed these observations in a panel of orthotopic xenografts and human GBM specimens. Exposure of non-GSC to low-level exogenous RS generated radiation resistance, confirming RS as a novel determinant of radiation resistance in tumor cells. GSC exhibited DNA double-strand breaks, which colocalized with "replication factories" and RNA: DNA hybrids. GSC also demonstrated increased expression of long neural genes (>1 Mbp) containing common fragile sites, supporting the hypothesis that replication/transcription collisions are the likely cause of RS in GSC. Targeting RS by combined inhibition of ATR and PARP (CAiPi) provided GSC-specific cytotoxicity and complete abrogation of GSC radiation resistance These data identify RS as a cancer stem cell-specific target with significant clinical potential. These findings shed new light on cancer stem cell biology and reveal novel therapeutics with the potential to improve clinical outcomes by overcoming inherent radioresistance in GBM. .
Resistance to radiotherapy in glioblastoma (GBM) is an important clinical problem and several authors have attributed this to a subpopulation of GBM cancer stem cells (CSCs) which may be responsible for tumour recurrence following treatment. It is hypothesised that GBM CSCs exhibit upregulated DNA damage responses and are resistant to radiation but the current literature is conflicting. We investigated radioresistance of primary GBM cells grown in stem cell conditions (CSC) compared to paired differentiated tumour cell populations and explored the radiosensitising effects of the ATM inhibitor KU-55933. We report that GBM CSCs are radioresistant compared to paired differentiated tumour cells as measured by clonogenic assay. GBM CSC's display upregulated phosphorylated DNA damage response proteins and enhanced activation of the G2/M checkpoint following irradiation and repair DNA double strand breaks (DSBs) more efficiently than their differentiated tumour cell counterparts following radiation. Inhibition of ATM kinase by KU-55933 produced potent radiosensitisation of GBM CSCs (sensitiser enhancement ratios 2.6-3.5) and effectively abrogated the enhanced DSB repair proficiency observed in GBM CSCs at 24 h post irradiation. G2/M checkpoint activation was reduced but not abolished by KU-55933 in GBM CSCs. ATM kinase inhibition overcomes radioresistance of GBM CSCs and, in combination with conventional therapy, has potential to improve outcomes for patients with GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.