Objective: To evaluate changes in body position and effect of CO 2 insufflation on the hepatobiliary and gastrointestinal systems using computed tomography (CT) to determine optimal laparoscopic approach. Study Design: Experimental study.Animals: Healthy intact female Beagles (n = 6) of similar age, weight, and body condition score.Methods: Urinalysis, peripheral blood smear, and abdominal ultrasonography were performed to determine dog health. A series of pre insufflation (PrI) CT scans in ventrodorsal routine (VDR), ventrodorsal Trendelenburg (VDT), left lateral (LL), and right lateral (RL) recumbency were performed before and after abdominal insufflation (PoI) with CO 2 (10-14 mm Hg). Pre-determined measurements were made on PrI and PoI scans and differences compared.
Cricopharyngeal achalasia is a rare cause of dysphagia in the dog. However it must be differentiated from other causes of dysphagia as it is treatable with surgery. It is a disruption of the cricopharyngeal phase of the oropharyngeal phase of deglutition. There appears to be an incoordination in the swallowing process between the relaxation of the rostral, middle pharyngeal muscles and the caudal pharyngeal muscles. It is seen as a primary condition in young animals presenting soon after weaning onto solid food. The dogs appear clinically healthy unless there is secondary aspiration pneumonia or emaciation. These dogs may present as respiratory emergencies and require intensive support and treatment prior to corrective surgery. The diagnosis is made on videofluoroscopy. The condition carries a good prognosis for cure with surgical myectomy of the cricopharyngeal muscle and the thyropharyngeal muscle, which make up the upper oesophageal sphincter. Temporary relief prior to surgery can be achieved by injection of the cricopharyngeal muscle with botulism toxin. Surgical treatment for dysphagia secondary to an underlying neurological, neuromuscular or pharyngeal weakness carries a guarded prognosis and will make aspiration pneumonia worse
Thoraco-lumbar intervertebral disc extrusion is a common condition seen in veterinary practice. Although there are different surgical techniques described for decompression, most of these techniques are based on the surgeon’s preference or experience rather than clinical research. Our objective was to determine the clinical outcomes, using return to ambulation and micturition, as well as complication rates, in a large cohort of dogs by using a mini-hemilaminectomy for decompression of the thoraco-lumbar spinal cord with Hansen type I thoraco-lumbar intervertebral disc extrusions (IVDE). A retrospective study was performed on dogs presented for acute thoraco-lumbar IVDE undergoing surgical decompression. In total, 252 spinal decompression surgeries were performed. The recovery rates for patients graded with a modified Frankel score (MFS) of 5 to 0 were 100%, 99%, 100%, 96%, 86% and 64%, respectively. The mean days to micturition across all the MFS 5–0 were 1.5 (standard deviation [SD] ± 0.7), 1.8 (SD ± 1), 4.3 (SD ± 1.7), 6.4 (SD ± 2.2), 9.3 (SD 3) and 11.9 (SD ± 2.2), respectively. The mean days to ambulation across all the groups 5–0 were 2 (SD ± 0.7), 2.6 (SD ± 1), 7.6 (SD ± 4.4), 10.1 (SD ± 2.5), 16.1 (SD ± 2.9) and 19.3 (SD ± 2.6), respectively. Postoperative complications were seen in 32 of the surgeries, with a complication rate of 13%. Minor complications accounted for 38% of all complications, and major complications constituted 62% of all complications. In total, 15 dogs died or were euthanised as a direct result of thoraco-lumbar disc extrusion or the surgical procedure, with a mortality rate of 6% across all groups. A mini-hemilaminectomy provides similar clinical outcomes described in the literature for other methods of spinal cord decompressive surgery, and it also provides patients with similar short-term outcomes to other described decompressive surgical techniques in the dog, which have been described in the literature.
Background Polymethylmethacrylate cement is used in total knee arthroplasty and plays a significant role in the success of the procedure. Temperature variation is known to influence cement setting time in vitro. Our aim is to evaluate the relationship between ambient theatre temperature and cement setting time in vivo. Methods Theatre temperature and cement setting time were prospectively recorded during 683 total knee arthroplasties over 8 years using a single cement and vacuum mixing system (Simplex with tobramycin). Setting time was defined as the time until a scalpel blade could not indent the cement surface. Results Mean temperature was 18.92°C (SD 1.16) and setting time 13.08 min (SD 1.92). A moderate inverse relationship exists between ambient temperature and setting time (Pearson's R = −0.423); however, potential setting times within a given temperature range varied considerably (<19°C: 8–19.1 min, 19–20°C: 7–18 min and >20°C: 7.5–16 min), suggesting that temperature alone cannot reliably predict setting time. Conclusion Our data support the current understanding of bone cement properties in vivo and suggest that surgeons should be mindful in regards to unpredictable cement setting time and optimal theatre environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.