DEX-associated CLANs were structurally similar to those induced by mAb AP-5 and involved both increased expression and activation of αvβ3 integrins. Thus, glucocorticoid-induced CLAN formation may involve enhanced β3 integrin signaling in HTM cells, possibly by an inside-out signaling mechanism.
The αvβ5 integrin-FAK-mediated pathway regulates phagocytosis in TM cells and this pathway is inhibited by activation of αvβ3 integrins. This suggests that changes in integrin expression and activity may be responsible for alterations in phagocytosis observed in steroid induced glaucoma.
Steroid-induced glaucoma is an iatrogenic condition resulting from the use of glucocorticoids. Glucocorticoids such as dexamethasone (DEX) 1 raise intraocular pressure (IOP) in ϳ40% of patients in the general population, and ϳ6% of these patients will go on to develop glaucoma (1, 2). This condition is similar to primary open angle glaucoma (1-3), and is caused by a restriction in fluid outflow through the trabecular meshwork (TM), resulting in an imbalance between the amount of aqueous humor produced and the amount drained. This imbalance results in a higher IOP.It is thought that an alteration in the cytoskeletal structure or contractile properties of TM cells may result in the disruption of normal fluid flow. In support of this idea, cross-linked actin networks, referred to as CLANs, have been observed with increased frequency in the TM of glaucomatous patients and in glucocorticoid treated anterior segments as well as in TM cells in culture. CLANs are thought to alter the contractility of the TM by holding the cells in a rigid conformation, making the cells unresponsive to the change in pressure and blocking the aqueous humor outflow pathway (1,4,5). Thus, agents such as H7 and the latrunculins A and B, which disrupt the organization of the cytoskeleton, decrease IOP in porcine and monkey cultured anterior segments (6 -9).Control of the actin cytoskeleton is mediated by the Rho family of small GTPases. The Rho effector ROCK has been shown to play a part in TM contractility and modulation of IOP. Inhibition of ROCK using a dominant negative mutant or the inhibitor Y-27632 causes TM cells to "relax" by decreasing actin stress fiber formation and phosphorylation of myosin light chain (MLC) (10, 11). ROCK inhibition also decreases IOP in cultured human and porcine anterior segments (10, 11). In contrast, constitutively active RhoA (RhoA V14) increases From the ‡Departments
Mutations in the myocilin gene (MYOC) account for 10% of juvenile open-angle glaucoma cases and 3–4% of adult onset primary open-angle glaucoma cases. It is a secreted glycoprotein found in many ocular and non-ocular tissues and has been linked to elevated intraocular pressure. In human trabecular meshwork (HTM) cells, MYOC expression can be induced by the glucocorticoid dexamethasone (DEX). In this study we examined the role of the calcineurin/NFATc1 (Nuclear Factor of Activated T-cells) pathway in the DEX induction of MYOC in HTM cells. In post-confluent HTM cells treated with either 500 nM DEX or 0.1% ethanol (EtOH; vehicle control) for 0–6 days both protein and mRNA levels of MYOC were increased while DEX was present. The protein and mRNA levels remained elevated for an additional 12 days after the removal of DEX. Only 1 day of DEX treatment was sufficient to trigger a sustained increase in MYOC mRNA that lasted for 4 days after the removal of DEX. Similar to other studies, myocilin protein expression was not seen until the second day of DEX treatment while mRNA increased within one day of DEX indicating that this is a secondary glucocorticoid response. To determine if MYOC gene expression was regulated by calcineurin/NFATc1, HTM cells were pre-treated for 1 h with the calcineurin inhibitors cyclosporin A or INCA-6 prior to the addition of DEX or EtOH for 2 days. NFATc1 siRNA was used to determine if NFATc1 was required for MYOC mRNA expression. Cells were also treated with the ionophone ionomycin to determine if increased cytosolic calcium affected MYOC expression. These studies showed that the DEX induced increase in MYOC mRNA could be inhibited with either CsA or INCA-6 or by transfection with NFATc1 siRNA and that ionomycin was unable to increase MYOC mRNA. Immunofluorescence microscopy was also performed to determine if DEX caused the nuclear translocation of NFATc1. Immunostaining showed that NFATc1 relocated to the nucleus within 15 min of DEX treatment and remained there for up to 2 h. The data suggest that the DEX-induced increase in MYOC expression activates a calcineurin and NFATc1 pathway in a calcium independent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.