COPD is associated with a progressive loss of muscle mass and function. However, there is an unmet need to define and standardise methods to estimate the prevalence of sarcopenia in COPD patients.We performed a systematic review and meta-analysis of the prevalence of this extrapulmonary manifestation in COPD patients. We searched Embase, Medline (Ovid), CINAHL (EBSCO), Web of Science, Scopus and Google Scholar for studies published up to January 17, 2019, assessing sarcopenia in COPD patients based on low muscle mass and decreased muscle function. Interventional studies, in vitro experiments, protocols or reviews and meta-analyses were excluded. We estimated heterogeneity (I2) and assessed significance (Q) using a Chi-squared test for estimates obtained from random-effects models.4465 articles were initially identified. After removing the duplicates and applying the selection criteria, we reviewed 62 full-text articles. Finally, 10 articles (n=2565 COPD patients) were included in this systematic review and meta-analyses. Overall, the prevalence of sarcopenia in patients with COPD was 21.6% (95% CI 14.6–30.9%, I2=94%), ranging from 8% in population-based to 21% in clinic-based studies, and 63% in COPD patients residing in nursing homes.Sarcopenia is frequently observed in COPD patients, with varying prevalence across population settings. Sarcopenia in COPD should be assessed using standardised tests and cut-off points from sarcopenia consensus criteria for clinical practice and international comparisons.
Background Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. MethodsIn this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296.Findings Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0•98, 95% CI 0•84-1•14) or combination use exposure (1•01, 0•90-1•15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0•91, 95% CI 0•68-1•21; with heterogeneity of >40%) or combination use (0•95, 0•83-1•07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0•88, 95% CI 0•79-0•99) and non-significant for monotherapy (0•85, 0•69-1•05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute res...
Importance COVID-19 is causing high mortality worldwide. Developing models to quantify the risk of poor outcomes in infected patients could help develop strategies to shield the most vulnerable during de-confinement. Objective To develop and externally validate COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis. Design Multinational, distributed network cohorts. Setting We analyzed a federated network of electronic medical records and administrative claims data from 13 data sources and 6 countries, mapped to a common data model. Participants Model development used a patient population consisting of >2 million patients with a general practice (GP), emergency room (ER), or outpatient (OP) visit with diagnosed influenza or flu-like symptoms any time prior to 2020. The model was validated on patients with a GP, ER, or OP visit in 2020 with a confirmed or suspected COVID-19 diagnosis across four databases from South Korea, Spain and the United States. Outcomes Age, sex, historical conditions, and drug use prior to index date were considered as candidate predictors. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. Results Overall, 43,061 COVID-19 patients were included for model validation, after initial model development and validation using 6,869,127 patients with influenza or flu-like symptoms. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, and kidney disease) which combined with age and sex could discriminate which patients would experience any of our three outcomes. The models achieved high performance in influenza. When transported to COVID-19 cohorts, the AUC ranges were, COVER-H: 0.73-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.82-0.90. Calibration was overall acceptable, with overestimated risk in the most elderly and highest risk strata. Conclusions and relevance A 9-predictor model performs well for COVID-19 patients for predicting hospitalization, intensive services and death. The models could aid in providing reassurance for low risk patients and shield high risk patients from COVID-19 during de-confinement to reduce the virus' impact on morbidity and mortality.
Background: To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI) collaborative network and standardization can be utilized to scale-up external validation of patient-level prediction models by enabling validation across a large number of heterogeneous observational healthcare datasets. Methods: Five previously published prognostic models (ATRIA, CHADS 2 , CHADS 2 VASC, Q-Stroke and Framingham) that predict future risk of stroke in patients with atrial fibrillation were replicated using the OHDSI frameworks. A network study was run that enabled the five models to be externally validated across nine observational healthcare datasets spanning three countries and five independent sites. Results: The five existing models were able to be integrated into the OHDSI framework for patient-level prediction and they obtained mean c-statistics ranging between 0.57-0.63 across the 6 databases with sufficient data to predict stroke within 1 year of initial atrial fibrillation diagnosis for females with atrial fibrillation. This was comparable with existing validation studies. The validation network study was run across nine datasets within 60 days once the models were replicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.