Abstract. Memory isolation is a key property of a reliable and secure computing system -an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology scales down to smaller dimensions, it becomes more difficult to prevent DRAM cells from electrically interacting with each other. In this paper, we expose the vulnerability of commodity DRAM chips to disturbance errors. By reading from the same address in DRAM, we show that it is possible to corrupt data in nearby addresses. More specifically, activating the same row in DRAM corrupts data in nearby rows. We demonstrate this phenomenon on Intel and AMD systems using a malicious program that generates many DRAM accesses. We induce errors in most DRAM modules (110 out of 129) from three major DRAM manufacturers. From this we conclude that many deployed systems are likely to be at risk. We identify the root cause of disturbance errors as the repeated toggling of a DRAM row's wordline, which stresses inter-cell coupling effects that accelerate charge leakage from nearby rows. We provide an extensive characterization study of disturbance errors and their behavior using an FPGA-based testing platform. Among our key findings, we show that (i) it takes as few as 139K accesses to induce an error and (ii) up to one in every 1.7K cells is susceptible to errors. After examining various potential ways of addressing the problem, we propose a low-overhead solution to prevent the errors.
Memory isolation is a key property of a reliable and secure computing system--an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology scales down to smaller dimensions, it becomes more difficult to prevent DRAM cells from electrically interacting with each other. In this paper, we expose the vulnerability of commodity DRAM chips to disturbance errors. By reading from the same address in DRAM, we show that it is possible to corrupt data in nearby addresses. More specifically, activating the same row in DRAM corrupts data in nearby rows. We demonstrate this phenomenon on Intel and AMD systems using a malicious program that generates many DRAM accesses. We induce errors in most DRAM modules (110 out of 129) from three major DRAM manufacturers. From this we conclude that many deployed systems are likely to be at risk. We identify the root cause of disturbance errors as the repeated toggling of a DRAM row's wordline, which stresses inter-cell coupling effects that accelerate charge leakage from nearby rows. We provide an extensive characterization study of disturbance errors and their behavior using an FPGA-based testing platform. Among our key findings, we show that (i) it takes as few as 139K accesses to induce an error and (ii) up to one in every 1.7K cells is susceptible to errors. After examining various potential ways of addressing the problem, we propose a low-overhead solution to prevent the errors
Designing efficient, application-specialized hardware accelerators requires assessing trade-offs between a hardware module's performance and resource requirements. To facilitate hardware design space exploration, we describe Aetherling, a system for automatically compiling data-parallel programs into statically scheduled, streaming hardware circuits. Aetherling contributes a space-and time-aware intermediate language featuring data-parallel operators that represent parallel or sequential hardware modules, and sequence data types that encode a module's throughput by specifying when sequence elements are produced or consumed. As a result, well-typed operator composition in the space-time language corresponds to connecting hardware modules via statically scheduled, streaming interfaces.We provide rules for transforming programs written in a standard data-parallel language (that carries no information about hardware implementation) into equivalent spacetime language programs. We then provide a scheduling algorithm that searches over the space of transformations to quickly generate area-efficient hardware designs that achieve a programmer-specified throughput. Using benchmarks from the image processing domain, we demonstrate that Aetherling enables rapid exploration of hardware designs with different throughput and area characteristics, and yields results that require 1.8-7.9× fewer FPGA slices than those of prior hardware generation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.