We measure apparent velocities (v app ) of the Hα and Hβ Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the ESO SN Ia Progenitor surveY (SPY;Napiwotzki et al. 2001). Assuming these WDs are nearby and co-moving, we correct our velocities to the Local Standard of Rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, v g : we find v g = v app = 32.57 ± 1.17 km s −1 . Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647 +0.013 −0.014 M ⊙ . We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay & Bergeron (2009). Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic T eff both above and below 12000 K; fits to line profiles give a rapid increase in the mean mass with decreasing T eff . Our results are consistent with no significant change in mean mass: M hot = 0.640 ± 0.014 M ⊙ and M cool = 0.686 +0.035 −0.039 M ⊙ . Subject headings:
We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating white dwarf photospheric conditions. Here we present timeresolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n e , and n = 2 level population, n 2 . Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n e ∼ 4 to ∼ 30 × 10 16 cm −3 throughout a 120-ns evolution of our plasma. Also, we observe n 2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼ 55 ns to become consistent with LTE. This supports our electron-temperature determination of T e ∼ 1.3 eV (∼ 15, 000 K) after this time.At n e 10 17 cm −3 , we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ 2 ) than the line profiles currently used in the white dwarf astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.
The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1–200 eV, and electron densities from 1017–23 cc−1. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, photoionization around active galactic nuclei, the efficiency of resonant Auger destruction in black-hole accretion disks, and H-Balmer line shapes in white dwarf photospheres.
We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods less than 4 hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here, which we use to put empirical constraints on the mass-radius relationship for extremely low-mass (≤ 0.30 M ⊙ ) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms the high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.