T4-like myoviruses are ubiquitous, and their genes are among the most abundant documented in ocean systems. Here we compare 26 T4-like genomes, including 10 from non-cyanobacterial myoviruses, and 16 from marine cyanobacterial myoviruses (cyanophages) isolated on diverse Prochlorococcus or Synechococcus hosts. A core genome of 38 virion construction and DNA replication genes was observed in all 26 genomes, with 32 and 25 additional genes shared among the non-cyanophage and cyanophage subsets, respectively. These hierarchical cores are highly syntenic across the genomes, and sampled to saturation. The 25 cyanophage core genes include six previously described genes with putative functions (psbA, mazG, phoH, hsp20, hli03, cobS), a hypothetical protein with a potential phytanoyl-CoA dioxygenase domain, two virion structural genes, and 16 hypothetical genes. Beyond previously described cyanophage-encoded photosynthesis and phosphate stress genes, we observed core genes that may play a role in nitrogen metabolism during infection through modulation of 2-oxoglutarate. Patterns among non-core genes that may drive niche diversification revealed that phosphorus-related gene content reflects source waters rather than host strain used for isolation, and that carbon metabolism genes appear associated with putative mobile elements. As well, phages isolated on Synechococcus had higher genome-wide %G+C and often contained different gene subsets (e.g. petE, zwf, gnd, prnA, cpeT) than those isolated on Prochlorococcus. However, no clear diagnostic genes emerged to distinguish these phage groups, suggesting blurred boundaries possibly due to cross-infection. Finally, genome-wide comparisons of both diverse and closely related, co-isolated genomes provide a locus-to-locus variability metric that will prove valuable for interpreting metagenomic data sets.
SummaryOceanic phages are critical components of the global ecosystem, where they play a role in microbial mortality and evolution. Our understanding of phage diversity is greatly limited by the lack of useful genetic diversity measures. Previous studies, focusing on myophages that infect the marine cyanobacterium Synechococcus, have used the coliphage T4 portal-protein-encoding homologue, gene 20 (g20), as a diversity marker. These studies revealed 10 sequence clusters, 9 oceanic and 1 freshwater, where only 3 contained cultured representatives. We sequenced g20 from 38 marine myophages isolated using a diversity of Synechococcus and Prochlorococcus hosts to see if any would fall into the clusters that lacked cultured representatives. On the contrary, all fell into the three clusters that already contained sequences from cultured phages. Further, there was no obvious relationship between host of isolation, or host range, and g20 sequence similarity. We next expanded our analyses to all available g20 sequences (769 sequences), which include PCR amplicons from wild uncultured phages, non-PCR amplified sequences identified in the Global Ocean Survey (GOS) metagenomic database, as well as sequences from cultured phages, to evaluate the relationship between g20 sequence clusters and habitat features from which the phage sequences were isolated. Even in this meta-data set, very few sequences fell into the sequence clusters without cultured representatives, suggesting that the latter are very rare, or sequencing artefacts. In contrast, sequences most similar to the culture-containing clusters, the freshwater cluster and two novel clusters, were more highly represented, with one particular culture-containing cluster representing the dominant g20 genotype in the unamplified GOS sequence data. Finally, while some g20 sequences were non-randomly distributed with respect to habitat, there were always numerous exceptions to general patterns, indicating that phage portal proteins are not good predictors of a phage's host or the habitat in which a particular phage may thrive.Virus-like particles occur in high abundance (to 10 8 ml -1
Oxygen-oxygen bond formation and O 2 generation occur from the S 4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn 4 Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O-O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.
The H/D exchange of arenes in acidic media by transition-metal and main-group-metal complexes and common inorganic salts was studied. The influence of Lewis acidity, anions, charge, and ligands was evaluated. The results indicate that the determination of H/D exchange activity in acidic media is not related to the formation of metal−carbon bonds (i.e., C−H activation). The combined experimental data (regioselectivity, activation energy, kinetics, isotope effects, solvent effects) and DFT calculations point toward a proton catalysis mechanism. Thus, highly Lewis acidic metal compounds, such as aluminum(III) triflate, were extraordinarily active for the H/D exchange reactions. Indeed, the degree of H/D exchange reactivity allows for a comparative measurement of Lewis acidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.