Accurate and efficient predictions of hydrocarbon diffusivities in zeolitic imidazolate frameworks (ZIFs) are challenging, due to the small pore size of materials such as ZIF-8 and the wide range of diffusion time scales of hydrocarbon molecules in ZIFs. Here we have computationally measured the hopping rates of 15 different molecules (kinetic diameters of 2.66-5.10 Å) in ZIF-8 via dynamically corrected transition state theory (dcTST). Umbrella sampling combined with the one-dimensional weighted histogram analysis method (WHAM) was used to calculate the diffusion free energy barriers. Both the umbrella sampling and dynamical correction calculations included ZIF-8 flexibility, which is found to be critical in accurately describing molecular diffusion in this material. Comparison of the computed diffusivities to extant experimental results shows remarkable agreement within an order of magnitude for all the molecules. The dcTST method was also applied to study the effect of hydrocarbon loadings. Self and transport diffusion coefficients of methane, ethane, ethylene, propane, propylene, n-butane, and 1-butene in ZIF-8 are reported over a temperature range of 0-150 °C and loadings from infinite dilution to liquid-like loadings.
Mixed-linker zeolitic imidazolate frameworks (ZIFs) are nanoporous materials that exhibit continuous and controllable tunability of properties like effective pore size, hydrophobicity, and organophilicity. The structure of mixed-linker ZIFs has been studied on macroscopic scales using gravimetric and spectroscopic techniques. However, it has so far not been possible to obtain information on unit-cell-level linker distribution, an understanding of which is key to predicting and controlling their adsorption and diffusion properties. We demonstrate the use of (1)H combined rotation and multiple pulse spectroscopy (CRAMPS) NMR spin exchange measurements in combination with computational modeling to elucidate potential structures of mixed-linker ZIFs, particularly the ZIF 8-90 series. All of the compositions studied have structures that have linkers mixed at a unit-cell-level as opposed to separated or highly clustered phases within the same crystal. Direct experimental observations of linker mixing were accomplished by measuring the proton spin exchange behavior between functional groups on the linkers. The data were then fitted to a kinetic spin exchange model using proton positions from candidate mixed-linker ZIF structures that were generated computationally using the short-range order (SRO) parameter as a measure of the ordering, clustering, or randomization of the linkers. The present method offers the advantages of sensitivity without requiring isotope enrichment, a straightforward NMR pulse sequence, and an analysis framework that allows one to relate spin diffusion behavior to proposed atomic positions. We find that structures close to equimolar composition of the two linkers show a greater tendency for linker clustering than what would be predicted based on random models. Using computational modeling we have also shown how the window-type distribution in experimentally synthesized mixed-linker ZIF-8-90 materials varies as a function of their composition. The structural information thus obtained can be further used for predicting, screening, or understanding the tunable adsorption and diffusion behavior of mixed-linker ZIFs, for which the knowledge of linker distributions in the framework is expected to be important.
Although computational models have been used to predict adsorption of molecules in large libraries of porous adsorbents, previous work of this kind has focused on a small number of molecules as potential adsorbates. In this study, molecular simulations were used to consider the adsorption of a diverse range of molecules in a large collection of metal-organic framework (MOF) materials. Specifically, 11 304 isotherms were obtained from molecular simulations of 24 different adsorbates in 471 MOFs. This information provides insight into several interesting questions that could not be addressed with previously available data. Highly computationally efficient methods are introduced that can predict isotherms for a wide range of adsorbing molecules with far less computation than traditional molecular simulations. By characterizing the 276 binary mixtures defined by the molecules considered, "privileged" adsorbents are shown to exist, which are effective for separating many different molecular mixtures. Finally, correlations that were developed previously to predict molecular solubility in polymers are found to be surprisingly effective in predicting the average properties of molecules adsorbing in MOFs.
Because defects are ubiquitous in materials, they may play an important role in affecting the performance of materials in practical applications. Here, we investigate the influence of point defects on the diffusion of molecules including water, hydrocarbons, and acid gases in zeolitic imidazolate framework-8 (ZIF-8) using molecular simulations. To make these simulations possible, we introduce a force field that extends previous descriptions of pristine ZIF-8 to include experimentally relevant point defects. In general, the point defects we examined increase the local hopping rate for molecular diffusion, suggesting that low concentrations of these defects will not dominate long-range molecular diffusion in ZIF-8.
Quantitatively modeling adsorbate diffusion through zeolitic imidazolate frameworks (ZIFs) must account for the inherent flexibility of these materials. The lack of a transferable intramolecular ZIF force field (FF) for use in classical simulations has previously made an accurate simulation of adsorbate diffusion in many ZIFs impossible. We resolve this problem by introducing a density functional theory parameterized force field (FF) for ZIFs named the intraZIF-FF, which includes perturbations to the class I force fields previously used to model ZIFs. This FF outperforms ad hoc force fields at predicting ab initio relative energies and atomic forces taken from fully periodic ab initio molecular dynamics simulations of SALEM-2, ZIF-7, ZIF-8, and ZIF-90. We use the intraZIF-FF to predict the infinite dilution self-diffusion coefficients of 30 adsorbates with molecular diameters ranging from 2.66 to 7.0 Å in these 4 ZIFs. These results greatly increase the number of adsorbates for which accurate information about molecular diffusion in ZIFs is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.