This paper proposes a solution for low-cost consumer IoT devices to employ end-to-end security without requiring additional hardware. Manufacturers of consumer IoT devices often sacrifice security in favour of features, user-friendliness, time to market or cost, in order to stay ahead of their competitors. However, this is unwise, as demonstrated by recent hacks on consumer IoT devices. Low-cost embedded devices struggle to create suitable entropy for key generation; on the other hand, smartphones are both abundant and have multiple sources of entropy for strong key generation. The proposed architecture takes advantage of these properties and offloads key generation and transfer to the user's smartphone, removing the need for constrained IoT devices to perform public key infrastructure and generate symmetric keys. The authors implemented the design on a $1 general-purpose microcontroller and then analysed the performance. The design allows all communication to and from the device to be encrypted while being simple to setup, low-cost and responsive without any additional manufacturing cost. The architecture presents a general solution, which could be implemented on any microcontroller. Since the architecture does not require any additional hardware, it can be retroactively applied to deployed devices through a firmware update.
Future power networks will require much greater levels of machine-to-machine interaction to enable smart grid applications, and ultimately increase the efficiency of the power network. Low-Power Wide-Area Network (LPWAN) technology enables the deployment of many new IoT solutions in areas such as controlling and monitoring assets, environmental sensing and location tracking. In this paper, a prototype low-cost LPWAN module is developed to be retrofitted to existing Fault Passage Indicators, creating a automatic remote detection and location system for medium voltage faults, reducing the time to find faults from hours to minutes. This prototype device was then tested on a physical 11kV overhead line network, where the device demonstrated it was robust and suitable for mass deployment on a live network. The finalised prototype module costs roughly 5% of a single FPI unit, and additionally features the ability to remotely reconfigure FPI making installation and maintenance more convenient.
The Internet of Things (IoT)-connection of small smart sensors, actuators and other devices to the Internet-is a key concept within the smart home. To ease deployment, such devices are often wireless and battery powered. An important question is the wireless interface used. The ubiquity of Wi-Fi in homes today makes this an attractive option, but the relatively high power requirements of Wi-Fi conflict with the requirement for long battery life and low maintenance. Lower power alternatives, such as Bluetooth and Zigbee, have been proposed, but these have a much smaller installed base. In addition, many Smart Home products are currently available using 433MHz technology. This paper considers whether it is possible to reduce Wi-Fi power usage to the point where cheap Wi-Fi based products can be used instead of other protocols. The paper undertakes power analysis of a wireless sensor with an SoC Wi-Fi module, with and without a separate microcontroller optimised for low power usage which can be used to switch the Wi-Fi module on and off. This paper is an extension of previous work comparing Wi-Fi and 433MHz devices, and so we compare 433MHz to the optimised Wi-Fi sensor. Finally, the paper considers the energy usage of DHCP, demonstrating that further energy savings can be made if the application handles IP addressing and presents a static IP address to the Wi-Fi module.
With the number of Internet of Things (IoT) devices expected to explode to over 20 Billion devices by 2020, it is vital that efficient communication technologies are used. While ideally a single technology would emerge to simplify deployment, in practice the varying power and bandwidth requirements of different devices has led to an industry split over communication technologies, and while a number of new technologies have been designed with IoT in mind, commercial imperatives have meant that existing wireless protocols, in particular Wi-Fi and 433 MHz AM, remain the most prevelent. This article outlines the power usage of these two most common protocols, and considers power aspects of using each protocol in an IoT setting with experiments carried out with real world devices used in current products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.