International audienc
The planet candidates discovered by the Kepler mission provide a rich sample to constrain the architectures and relative inclinations of planetary systems within approximately 0.5 AU of their host stars. We use the triple-transit systems from the Kepler 16-months data as templates for physical triple-planet systems and perform synthetic transit observations, varying the internal inclination variation of the orbits. We find that all the Kepler triple-transit and double-transit systems can be produced from the triple-planet templates, given a low mutual inclination of around five degrees. Our analysis shows that the Kepler data contains a population of planets larger than four Earth radii in single-transit systems that can not arise from the triple-planet templates. We explore the hypothesis that high-mass counterparts of the triple-transit systems underwent dynamical instability to produce a population of massive double-planet systems of moderately high mutual inclination. We perform N -body simulations of mass-boosted triple-planet systems and observe how the systems heat up and lose planets by planet-planet collisions, and less frequently by ejections or collisions with the star, yielding transits in agreement with the large planets in the Kepler single-transit systems. The resulting population of massive double-planet systems can nevertheless not explain the additional excess of low-mass planets among the observed single-transit systems and the lack of gas-giant planets in double-transit and triple-transit systems. Planetary instability of systems of triple gas-giant planets can be behind part of the dichotomy between systems hosting one or more small planets and those hosting a single giant planet. The main part of the dichotomy, however, is more likely to have arisen already during planet formation when the formation, migration or scattering of a massive planet, triggered above a threshold metallicity, suppressed the formation of other planets in sub-AU orbits. Subject headings: planets and satellites: formation -planets and satellites: dynamical evolution and stability -protoplanetary disks
The stars that populate the solar neighbourhood were formed in stellar clusters. Through Nbody simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet-planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs with masses less than a critical mass of M WD,crit = 0.2 M undergo stable mass transfer and evolve into ultra-compact X-ray binaries. Systems with higher-mass white dwarfs experience unstable mass transfer, which leads to tidal disruption of the white dwarf. Our low critical mass compared to the standard jet-only model of mass loss arises from the efficient removal of angular momentum in the mechanical disc winds which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter timescales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultra-compact X-ray binaries and radio pulsars with white dwarf companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher-mass white dwarfs.
We show that collisions with stellar--mass black holes can partially explain
the absence of bright giant stars in the Galactic Centre, first noted by Genzel
et al, 1996. We show that the missing objects are low--mass giants and AGB
stars in the range 1-3 M$_{\odot}$. Using detailed stellar evolution
calculations, we find that to prevent these objects from evolving to become
visible in the depleted K bands, we require that they suffer collisions on the
red giant branch, and we calculate the fractional envelope mass losses
required. Using a combination of Smoothed Particle Hydrodynamic calculations,
restricted three--body analysis and Monte Carlo simulations, we compute the
expected collision rates between giants and black holes, and between giants and
main--sequence stars in the Galactic Centre. We show that collisions can
plausibly explain the missing giants in the $10.5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.