ABSTRACT. A model for the Mandelbrot set is due to Thurston and is stated in the language of geodesic laminations. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials, even conjectural models are missing, one possible reason being that the higher degree analog of the MLC conjecture is known to be false. We provide a combinatorial model for an essential part of the parameter space of complex cubic polynomials, namely, for the space of all cubic polynomials with connected Julia sets all of whose cycles are repelling (we call such polynomials dendritic). The description of the model turns out to be very similar to that of Thurston.
Abstract. A small perturbation of a quadratic polynomial f with a non-repelling fixed point gives a polynomial g with an attracting fixed point and a Jordan curve Julia set, on which g acts like angle doubling. However, there are cubic polynomials with a non-repelling fixed point, for which no perturbation results into a polynomial with Jordan curve Julia set. Motivated by the study of the closure of the Cubic Principal Hyperbolic Domain, we describe such polynomials in terms of their quadratic-like restrictions.
Polynomials from the closure of the principal hyperbolic domain of the cubic connectedness locus have some specific properties, which were studied in a recent paper by the authors. The family of (affine conjugacy classes of) all polynomials with these properties is called the Main Cubioid. In this paper, we describe a combinatorial counterpart of the Main Cubioid -the set of invariant laminations that can be associated to polynomials from the Main Cubioid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.