Link to publication on Research at Birmingham portal General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version. Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh.
In many low- and middle-income countries antibiotic resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here we characterised the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of Extended-Spectrum Beta-Lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanised settings (n = 7), from rural ponds with a history of aquaculture-related antibiotic use (n = 11) and from rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average 73.8% of assigned reads), while in the water samples Cyanobacteria (on average 60.9% of assigned reads) were the predominant phylum. Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. We identified an IncQ1 sulphonamide resistance plasmid ancestral to the widely studied RSF1010 in one of the urban water samples. The abundance of antibiotic resistance genes was significantly correlated (R2 = 0.73; P = 8.9 x 10-15) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanised settings.
Objectives: To investigate an outbreak of Enterococcus faecium in a hospital haematology ward and uncover the mechanism of a vancomycin resistance phenotype-genotype disparity in an isolate from this outbreak. Methods: Whole genome shotgun sequencing was used for the phylogenetic analysis of E. faecium isolates (n = 39) and to identify the carriage of antibiotic resistance genes. A long-read sequencing approach was adopted to identify structural variations in the vancomycin resistance region of a vancomycin-variable E. faecium (VVE) and to uncover the resistance reversion mechanism in this isolate. RT-qPCR and RT-PCR were used to determine differences in the expression of vanRS and vanHAX among strains. Results: The E. faecium strains isolated in the hospital haematology ward were extensively drug resistant and highly diverse. The notable expansion of ST262 among patients was the likely driver of a VRE outbreak. A VVE isolate was identified that could rapidly revert to a vancomycin-resistant state in the presence of vancomycin. Disruption of the vanR gene in this isolate by an IS6-family element impaired its response to vancomycin. However, when the isolate was evolved to vancomycin resistance, it could constitutively express the vanHAX genes at levels up to 36,000-fold greater than the parent isolate via co-transcription with a ribosomal RNA operon. Conclusion: In this study, we report a VVE isolate that was isolated during a VRE outbreak. This strain was capable of rapidly reverting to a resistant phenotype through a novel mechanism involving integration of vanHAX downstream of a ribosomal RNA operon. During VRE outbreaks, attention should be paid to contemporaneous vancomycin-susceptible strains as these may carry silent vancomycin resistance genes that can be activated through genomic rearrangements upon exposure to vancomycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.