This paper examines the benefits of edge miningdata mining that takes place on the wireless, battery-powered, smart sensing devices that sit at the edge points of the Internet of Things. Through local data reduction and transformation, edge mining can quantifiably reduce the number of packets that must be sent, reducing energy usage and remote storage requirements. Additionally, edge mining has the potential to reduce the risk to personal privacy through embedding of information requirements at the sensing point, limiting inappropriate use. The benefits of edge mining are examined with respect to three specific algorithms: Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and Bare Necessities (BN), which are all instantiations of General SIP (G-SIP). In general, the benefits provided by edge mining are related to the predictability of data streams and availability of precise information requirements; results show that L-SIP typically reduces packet transmission by around 95% (20-fold), BN reduces packet transmission by 99.98% (5000fold) and ClassAct reduces packet transmission by 99.6% (250fold). Although energy reduction is not as radical due to other overheads, minimisation of these overheads can lead to up to a 10-fold battery life extension for L-SIP, for example. These results demonstrate the importance of edge mining to the feasibility of many IoT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.