Gene targeting was used to create mice lacking sperm-associated antigen 6 (Spag6), the murine orthologue of Chlamydomonas PF16, an axonemal protein containing eight armadillo repeats predicted to be important for flagellar motility and stability of the axoneme central apparatus. Within 8 weeks of birth, approximately 50% of Spag6-deficient animals died with hydrocephalus. Spag6-deficient males surviving to maturity were infertile. Their sperm had marked motility defects and was morphologically abnormal with frequent loss of the sperm head and disorganization of flagellar structures, including loss of the central pair of microtubules and disorganization of the outer dense fibers and fibrous sheath. We conclude that Spag6 is essential for sperm flagellar motility and that it is important for the maintenance of the structural integrity of mature sperm. The occurrence of hydrocephalus in the mutant mice also implicates Spag6 in the motility of ependymal cilia.Fertilization is the process whereby sperm and eggs interact reciprocally to begin development. To initiate fertilization, mammalian sperm cells rely on the propulsive forces generated by their flagella to reach the site of fertilization in the oviduct and to penetrate the investments of the egg (8). All flagella contain an axoneme composed of structural elements and motor proteins that work in a coordinated and regulated fashion to produce wave forms that produce progressive movement (3,4,6,8,15,21). The axoneme consists of a central pair of microtubules (central apparatus) surrounded by nine doublets of microtubules with the associated force-generating dynein arms. The basic axonemal structure among cilia and flagella is conserved across species, and much of our understanding of the structure and function of the axoneme has been derived from the study of model organisms. Genetic studies on the green alga, Chlamydomonas, have revealed the importance of several genes for flagellar assembly, stability of specific axonemal structures, and motility (2-6, 15, 21). Inactivation of PF16, one of these Chlamydomonas genes, results in flagellar paralysis (2,20,21). Moreover, when the flagella from the pf16 mutant are demembranated to produce axonemes, the C1 microtubule is destabilized and C1-associated polypeptides are lost. We cloned the human and murine orthologues of PF16, named sperm-associated antigen 6 (Spag6), and found that the amino acid sequences of the mammalian and algal proteins were highly conserved, including the eight armadillo repeats required for the assembly of PF16 onto the C1 microtubule and for flagellar function (11,16,20,21). To determine if Spag6 plays a critical role in the function of the mammalian axoneme, we inactivated mouse Spag6. Males lacking Spag6 were infertile because their sperm had striking motility defects and were frequently decapitated and had disorganized flagellar structures. Approximately 50% of nullizygous males and females have enlarged heads and smaller bodies and die prematurely with hydrocephalus, presumably reflecting a...
The axonemes of cilia and flagella contain a "9+2" structure of microtubules and associated proteins. Proteins associated with the central doublet pair have been identified in Chlamydomonas that result in motility defects when mutated. The murine orthologue of the Chlamydomonas PF20 gene, sperm-associated antigen 16 (Spag16), encodes two proteins of M(r) approximately 71 x 10(3) (SPAG16L) and M(r) approximately 35 x 10(3) (SPAG16S). In sperm, SPAG16L is found in the central apparatus of the axoneme. To determine the function of SPAG16L, gene targeting was used to generate mice lacking this protein but still expressing SPAG16S. Mutant animals were viable and showed no evidence of hydrocephalus, lateralization defects, sinusitis, bronchial infection, or cystic kidneys-symptoms typically associated with ciliary defects. However, males were infertile with a lower than normal sperm count. The sperm had marked motility defects, even though ultrastructural abnormalities of the axoneme were not evident. In addition, the testes of some nullizygous animals showed a spermatogenetic defect, which consisted of degenerated germ cells in the seminiferous tubules. We conclude that SPAG16L is essential for sperm flagellar function. The sperm defect is consistent with the motility phenotype of the Pf20 mutants of Chlamydomonas, but morphologically different in that the mutant algal axoneme lacks the central apparatus.
cDNAs were cloned for the murine and human orthologues of Chlamydomonas PF20, a component of the alga axoneme central apparatus that is required for flagellar motility. The mammalian genes encode transcripts of 1.4 and 2.5 kb that are highly expressed in testis. The two transcripts appear to arise from alternative transcription start sites. The murine Pf20 gene was mapped to chromosome 1, syntenic with the location of the human gene on chromosome 2. An antibody generated against an N-terminal sequence of mouse Pf20 recognized a 71-kDa protein in sperm and testis extracts. Immunocytochemistry localized Pf20 to the tails of permeabilized sperm; electron microscope immunocytochemistry showed that Pf20 was located in the axoneme central apparatus. A murine Pf20-green fluorescent protein fusion protein expressed in Chinese hamster ovary cells accumulated in the cytoplasm. When coexpressed with Spag6, the mammalian orthologue of Chlamydomonas PF16, Pf20 was colocalized with Spag6 on polymerized microtubules. Yeast two-hybrid assays demonstrated interaction of the Pf20 WD repeats with Spag6. Pf20 was markedly reduced in sperm collected from mice lacking Spag6, which are infertile due to a motility defect. Our observations provide the first evidence for an association between mammalian orthologues of two Chlamydomonas proteins known to be critical for axoneme structure and function.The "9 ϩ 2" microtubule architecture of the eukaryote axoneme has remained virtually unchanged over millions of years of evolution. Understanding the function of molecules that make up the axoneme is important for elucidating the assembly and activity of these structures that are essential for cell motility. The distinctive arrangement of nine outer doublet microtubules in a circle around a central pair of microtubules is recognizable in electron micrographs of flagella and cilia from plants, algae, protists, and animals. Attached along specific microtubules at precise locations and intervals are ranks of substructures including dynein arms, radial spokes, and central pair projections (25,26). Axonemal dyneins form the inner and outer arm structures that have different functions; the outer arms add power and adjust beat frequency (3,4,10,15,16,24,33); the inner arms generate the axonemal waveform (4,7,14,17,27). To work together efficiently, the multiple dynein isoforms must be locally activated and inactivated at different points in the beat cycle, both around the axoneme and along its length.Structural and genetic evidence implicated the radial spokecentral pair structures as key regulators of dynein activity. The radial spoke heads make transient contact with structures that project from the central pair microtubules (35). The central pair is composed of two microtubules (designated C1 and C2 in algae) and their associated structures which include the central pair projections, central pair bridges linking the two tubules, and central pair caps which are attached to the distal or plus ends of the microtubules.Mutants of the alga Chlamydomon...
A cDNA encoding sperm antigen 6 (Spag6), the murine homologue of the Chlamydomonas reinhardtii PF16 protein-a component of the flagella central apparatus-was isolated from a mouse testis cDNA library. The cDNA sequence predicted a 55.3-kDa polypeptide containing 8 contiguous armadillo repeats with 65% amino acid sequence identity and 81% similarity to the Chlamydomonas PF1 protein. An antipeptide antibody generated against a C-terminal sequence recognized a 55-kDa protein in sperm extracts and localized Spag6 to the principal piece of permeabilized mouse sperm tails. When expressed in COS-1 cells, Spag6 colocalized with microtubules. The Spag6 gene was found to be highly expressed in testis and was mapped using the T31 radiation hybrid panel to mouse chromosome 16. Mutations in the Chlamydomonas PF16 gene cause flagellar paralysis. The presence of a highly conserved mammalian PF16 homologue (Spag6) raises the possibility that Spag6 plays an important role in sperm flagellar function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.