Stimulating the effector functions of tumor-infiltrating T lymphocytes (TIL) in primary and metastatic tumors could improve active and adoptive T-cell therapies for cancer. Abnormal glycolysis, high lactic acid production, proton accumulation, and a reversed intra-extracellular pH gradient are thought to help render tumor microenvironments hostile to roving immune cells. However, there is little knowledge about how acidic microenvironments affect T-cell immunity. Here, we report that lowering the environmental pH to values that characterize tumor masses (pH 6-6.5) was sufficient to establish an anergic state in human and mouse tumorspecific CD8 þ T lymphocytes. This state was characterized by impairment of cytolytic activity and cytokine secretion, reduced expression of IL-2Ra (CD25) and T-cell receptors (TCR), and diminished activation of STAT5 and extracellular signal-regulated kinase (ERK) after TCR activation. In contrast, buffering pH at physiologic values completely restored all these metrics of T-cell function. Systemic treatment of B16-OVA-bearing mice with proton pump inhibitors (PPI) significantly increased the therapeutic efficacy of both active and adoptive immunotherapy. Our findings show that acidification of the tumor microenvironment acts as mechanism of immune escape. Furthermore, they illustrate the potential of PPIs to safely correct T-cell dysfunction and improve the efficacy of T-cell-based cancer treatments. Cancer Res; 72(11); 2746-56. Ó2012 AACR.
Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOMinduced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg 21 ) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.Despite the major efforts made to identify novel therapeutic tools for metastatic melanoma, durable regressions are still rare events in patients with advanced disease, and no significant benefit in survival has been so far achieved. 1 The identification of alternative strategies based on different rationale to control disease progression remains mandatory in the field of melanoma research.It is becoming increasingly evident that the chronic destruction of cellular homeostasis occurring in cancer cells by metabolic alterations including glycolysis and intracellular
The mineralocorticoid receptor (MR) controls adipocyte function, but its role in the conversion of white adipose tissue (WAT) into thermogenic fat has not been elucidated. We investigated responses to the MR antagonists spironolactone (spiro; 20 mg/kg/d) and drospirenone (DRSP; 6 mg/kg/d) in C57BL/6 mice fed a high-fat (HF) diet for 90 d. DRSP and spiro curbed HF diet-induced impairment in glucose tolerance, and prevented body weight gain and white fat expansion. Notably, either MR antagonist induced up-regulation of brown adipocyte-specific transcripts and markedly increased protein levels of uncoupling protein 1 (UCP1) in visceral and inguinal fat depots when compared with the HF diet group. Positron emission tomography and magnetic resonance spectroscopy confirmed acquisition of brown fat features in WAT. Interestingly, MR antagonists markedly reduced the autophagic rate both in murine preadipocytes in vitro (10(-5) M) and in WAT depots in vivo, with a concomitant increase in UCP1 protein expression. Moreover, the autophagy repressor bafilomycin A1 (10(-8) M) mimicked the effect of MR antagonists, increasing UCP1 protein expression in primary preadipocytes. Hence, we showed that adipocyte MR regulates brown remodeling of WAT through a modulation of autophagy. These results provide a rationale for the use of MR antagonists to prevent the adverse metabolic consequences of adipocyte dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.