Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 1: FHM1) is caused by mutations in Ca(V)2.1 (P/Q-type) Ca(2+) channels. Knockin mice carrying a FHM1 mutation show increased neuronal P/Q-type current and facilitation of induction and propagation of cortical spreading depression (CSD), the phenomenon that underlies migraine aura and may activate migraine headache mechanisms. We studied cortical neurotransmission in neuronal microcultures and brain slices of FHM1 mice. We show gain of function of excitatory neurotransmission due to increased action-potential-evoked Ca(2+) influx and increased probability of glutamate release at pyramidal cell synapses but unaltered inhibitory neurotransmission at fast-spiking interneuron synapses. Using an in vitro model of CSD, we show a causative link between enhanced glutamate release and CSD facilitation. The synapse-specific effect of FHM1 mutations points to disruption of excitation-inhibition balance and neuronal hyperactivity as the basis for episodic vulnerability to CSD ignition in migraine.
Most of our knowledge about transmission at central synapses has been obtained by studying populations of synapses, but some important properties of synapses can be determined only by studying them individually. An important issue is whether a presynaptic action potential causes, at most, a single vesicle to be released, or whether multiquantal transmission is possible. Previous work in the CA1 region has shown that the response to stimulation of a single axon can be highly variable, apparently because it is composed of a variable number of quantal elements (Ϸ5 pA in amplitude). These quantal events have a low coefficient of variation (CV). Because the number of synaptic contacts involved is not known, the response could be because of uniquantal transmission at a varying number of synapses, or to multliquantal transmission at a single synapse. The former predicts that the CV at individual synapses should be small. We have used optical methods to measure the N-methyl-D-aspartate receptormediated Ca 2؉ elevation at single active synapses. Our main finding is that the amplitude of nonfailure responses could be highly variable, having a CV as large as 0.63. In one fortuitous experiment, the optically studied synapse was the only active synapse, and we could therefore measure both its N-methyl-D-aspartate (NMDA) receptorand ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated signals. At this synapse, both signals varied over a 10-fold range and were highly correlated. These results strongly suggest that transmission at single CA1 synapses can be multiquantal. Furthermore, the individual quantal response is very far from saturation, allowing the effective summation of many quanta. The existence of multiquantal release has important implications for defining synaptic strength and understanding the mechanisms of synaptic plasticity.A lthough there has been rapid progress in understanding the properties of central synapses, most experiments have been done on populations of synapses. Such studies can answer many types of questions, but provide little direct evidence regarding the stochastic properties of individual synapses. Recently, individual central synapses have begun to be studied (reviewed in ref. 1). An important question relates to the number of vesicles that are released and the interaction between them. There are indications that transmission can be uniquantal at some synapses, but multiquantal at others (2-4).The most extensively studied central synapse is the Schaffer collateral synapse onto CA1 hippocampal pyramidal cells. However, even for this synapse, there remain substantial questions about the properties of quantal transmission. A minimal stimulation method has been extensively used to study the ''unitary'' responses generated by single axonal inputs. There are now reports from seven independent laboratories indicating that the amplitude distribution of the excitatory postsynaptic potential (EPSP) can have evenly spaced peaks (5-12), the signature of quantal transmission. Stati...
The use of wavefront shaping to generate extended optical excitation patterns which are confined to a predetermined volume has become commonplace on various microscopy applications. For multiphoton excitation, three-dimensional confinement can be achieved by combining the technique of temporal focusing of ultra-short pulses with different approaches for lateral light shaping, including computer generated holography or generalized phase contrast. Here we present a theoretical and experimental study on the effect of scattering on the propagation of holographic beams with and without temporal focusing. Results from fixed and acute cortical slices show that temporally focused spatial patterns are extremely robust against the effects of scattering and this permits their three-dimensionally confined excitation for depths more than 500 µm. Finally we prove the efficiency of using temporally focused holographic beams in two-photon stimulation of neurons expressing the red-shifted optogenetic channel C1V1.
The existence of spontaneous calcium transients (SCaTs) dependent on intracellular store activation has been reported in putative axonal terminals of cerebellar basket interneurons. We used the two-photon imaging technique to optically identify basket terminals in acute cerebellar slices of young rats (11-16 d old) and study the properties of SCaTs unambiguously localized in these regions. The whole-cell recording configuration and preloading technique were alternatively used to load the calcium-dependent dye in the interneuron and compare SCaTs with action potential evoked calcium transients. SCaTs were observed in the basket terminals at frequencies that were significantly increased after bath application of 10 M ryanodine and did not depend on P/Q-or N-type voltage-dependent calcium channel activation. They originated at specific sites where bursts of events with temporal separation as small as 200 msec could be generated. Their sites of origin were spaced on average 6 m apart and were preferentially located near axonal endings. SCaTs had amplitudes comparable with those of Ca 2ϩ rises evoked by single action potentials that lead to release of neurotransmitter, as confirmed by parallel recordings of preloaded terminals and evoked IPSCs in the postsynaptic Purkinje cells. These results support the hypothesis that SCaTs at basket terminals underlie the large miniature IPSCs characteristic of Purkinje cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.