A simple, reliable, and low-cost fabrication method is proposed here for assembling paper-based electrochemical devices (PEDs) using a commercial desktop digitally controlled plotter/cutter, together with ordinary writing tools. Permanent markers (tips of 1 mm) were used to create effective hydrophobic barriers on paper, while micromechanical pencils (mounting 4B graphite leads, 0.5 mm in diameter) were adopted for automatically drawn precise reference, counter, and working carbon electrodes. Fabrication parameters, such as writing pressure and speed, were first optimized, and the electrochemical performance of these devices was then evaluated by using potassium hexacyanoferrate(II) as redox probe. The good interdevice reproducibility (4.8%) displayed by the relevant voltammetric responses confirmed that this strategy can be profitably adopted to easily assemble paper-based electrochemical devices in a highly flexible manner. The simplicity of the instrumentation used and the low cost of each single device (about $0.04), together with the speed of fabrication (about 2 min), are other important features of the proposed strategy. Finally, to confirm the effectiveness of this prototyping method for the analysis of real samples and rapid controls, PEDs assembled by this simple approach were successfully exploited for the analysis of vitamin B in food supplements.
Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.