The genesis of the products of the alteration of acid pyroclastic material is discussed and interpreted on the basis of the distribution, sedimentation conditions, post-sedimentation activity, mineral and chemical compositions of pyroclastic deposits in Bulgaria and Slovakia.It is found that the disordered nonequilibrium nature of the volcanic glass induces a diagenetic devitrification of the tuffs and formation of clinoptilolitic, adularia-cristobalite and bentonite rocks. With increasing temperature, the volcanic glass tends forward a stable state through a series of zeolite mineral associations: clinoptilolite-mordenite-analcime-feldspar. The change in mineral composition of this series of rocks occurs without a change in the chemical composition of the rocks, which could be explained by the closed nature of zeolite systems. The formation of bentonites is associated with the removal of alkaline ions under diagenetic conditions, while the formation of halloysite rocks is caused by hydrothermal activity.
Precise U-Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U-Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59± 0.29 Ma followed by granodiorite porphyries at 90.47±0.30 and 90.27±0.60 Ma and by crosscutting aplite dykes at 90.12±0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo-Au) mineralization. The main magmatic-hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26±0.32 Ma, only contains an uneconomic quartz-pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle-crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ɛ-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E-W extension associated with N-S compression, whereas the younger granodiorite dyke was emplaced during subsequent N-S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.
A combination of methods is applied in the present study to define the exact age of the Petrohan and Mezdreya plutons and trace their magma evolution. Field, petrological, and geochemical studies of the Petrohan pluton revealed its complex evolution and emphasized the role of magma mingling and mixing, complementary to the normal assimilation and fractional crystallization (AFC) processes. Using high-precision conventional U-Pb (CA)-ID-TIMS zircon and titanite dating in combination with CA-LA-ICP-MS zircon dating and tracing, we suggest an incremental growth of a common Petrohan-Mezdreya pluton. It was assembled over minimum 4.5 Ma from 311.14±0.48 Ma to 307.54±0.54 Ma. The younger age of the gabbro (308.12±0.33 Ma), compared with the age of granodiorites (311.14±0.48 Ma), provides numerical proofs for magma replenishment during the assembling of the Petrohan pluton. Whole-rock strontium-neodymium (initial 87Sr/86Sr ratios of 0.70521–0.70527 to 0.70462 and 143Nd/144Nd of 0.51221 to 0.51210) and Hf-zircon isotope data (ε-Hf from –5.8 to +3.6) argue for interaction of mantle derived magma with crustal melts but also mixing and mingling and transfer of zircon grains between the gabbroic and granitic melts. Possible petrogenetic scenario includes melting of subcontinental mantle lithosphere and crust and evolution trough AFC, FC and mingling/mixing processes. Considering the Petrohan-Mezdreya pluton as part of the Variscan orogeny in SE Europe, our new data support the accretion/collision of both the Balkan and Sredna Gora/Getic units with Moesia in the Early Carboniferous followed by syn- and post-collisional Carboniferous and Permian magmatism.
The K-silicate-sericitic alteration is one of the well-preserved hydrothermal alterations at the Elatsite porphyry-copper gold deposit (PCGD). It is observed in all lithological varieties, but shows asymmetric distribution of the secondary products. The alteration is genetically related with the occurrence of the K-silicate and Na-Ca-K-silicate alteration. The K-silicate-sericitic alteration has simple mineral content which includes mainly chlorite and sericite. The temperature of formation of the alteration is estimated between 250–268 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.