In this work, we propose a new silicon-based micro-fabrication technology to fabricate 3D high-density high-electrode-count neural micro-probe arrays scalable to thousands and even millions of individual electrodes with user-defined length, width, shape, and tip profile. This unique technology utilizes DRIE of ultra-high aspect-ratio holes in silicon and refilling them with multiple films to form thousands of individual needles with metal tips making up the “sea-of-electrodes” array (SEA). World-record density of 400 electrodes/mm2 in a 5184-needle array is achieved. The needles are ~0.5-1.2mm long, <20μm wide at the base, and <1μm at the tip. The silicon-based structure of these 3D array probes with sharp tips, makes them stiff enough and easily implantable in the brain to reach a targeted region without failing. Moreover, the high aspect ratio of these extremely fine needles reduces the tissue damage and improves the chronic stability. Functionality of the electrodes is investigated using acute in vivo recording in a rat barrel field cortex under isoflurane anesthesia.
We investigate propagation of squeezed light in array of coupled waveguides which has tremendous potential for applications in engineering. We take a look at the possibility of Talbot effect with squeezed states of light. We also demonstrate how Hong-Ou-Mandel effect may be engineered to be relatively immune to fabrication imperfections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.