Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.
Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.