In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol ) and F. oxysporum f. sp. radicis-lycopersici (Forl ) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl . However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol . In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plantspecific.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.
The response of microconidia from pathogenic and non-pathogenic Fusarium oxysporum to root exudates from tomato plants inoculated with different pathogenic and non-pathogenic F. oxysporum strains was studied. Root exudates from non-inoculated tomatoes highly stimulated the microconidial germination of the two tomato pathogens, F. oxysporum f.sp. lycopersici strain Fol 007 and F. oxysporum f.sp. radicis-lycopersici strain Forl 101587. In root exudates from tomato plants challenged with the pathogen Fol 007 the microconidial germination of Fol 007 was increased, whereas in root exudates from plants challenged with Forl 101587 the microconidial germination of Fol 007 was reduced. Root exudates of tomato plants challenged with the non-pathogenic unspecific F. oxysporum strain Fo 135 and the biocontrol strain Fo 47 clearly reduced microconidial germination of the pathogenic strain Forl 101587. Moreover, the microconidial germination rate of the biocontrol strain Fo 47 was increased in the presence of root exudates of tomato plants challenged with the tomato wilt pathogen Fol 007. These results indicate that pathogenic and non-pathogenic F. oxysporum strains alter the root exudation of tomato plants differently and consequently the fungal propagation of pathogenic and non-pathogenic F. oxysporum strains in the rhizosphere is affected differently.
Grape phylloxera is native to North America, where Vitis spp. acquired different mechanisms of resistance to leaf and root attack. Its appearance in European vineyards at the beginning of the 1860s, where the phylloxera-susceptible grapevine species V. vinifera L. is majorly cultivated, caused the devastation of a great number of vineyards, generating a deep crisis in the European wine production and trade industries. However, the origin and genetic structure of this pest across European vineyards still remain controversial and uncertain. Herein, we analysed the genetic structure of 1173 grape phylloxera individuals collected from 100 locations across eight European countries. Structure and phylogenetic analyses show that contemporary grape phylloxera populations in Europe are the result of at least two independent introductions from the native range that mirrors the historical records that also suggest two major outbreaks in Europe. The comparative analysis with samples from the native range trace back one of these two genetic groups to plants imported from the North East coast of North America, where the American species V. riparia and V. labrusca dominate. This study clarifies the level of genetic diversity of grape phylloxera in Europe and provides relevant information to resolve previous controversy about its origin.
Recent observations report the worldwide incidence of leaf-feeding grape phylloxera in formerly resistant scions of commercial vineyards. To analyze the genetic structure of leaf-feeding phylloxera, we performed an extensive sampling of leaf-feeding phylloxera populations in seven regions (Bcantons^) in Switzerland and Germany. The use of polymorphic microsatellite markers revealed presence of 203 unique grape phylloxera multilocus genotypes. Genetic structure analyses showed a high genetic similitude of these European samples with phylloxera samples from its native habitat on Vitis riparia (northeastern America). Nevertheless, no genetic structure within the European samples was observed, and neither host, geography nor sampling date factors caused clear effects on phylloxera genetic stratification. Clonality was high in commercial vineyards and leaf-feeding grape phylloxera strains were found to be present in scion leaves and rootstock roots in the same vineyard, potentially indicating migration between both habitats. We found indications of sexual reproduction, as shown by high degrees of genetic variation among collection sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.