Alpine and prealpine grasslands provide various ecosystem services and are hotspots for the storage of soil organic C (SOC) in Central Europe. Yet, information about aggregate-related SOC storage and its controlling factors in alpine and prealpine grassland soils is limited. In this study, the SOC distribution according to the aggregate size classes large macroaggregates (> 2000 μm), small macroaggregates (250–2000 μm), microaggregates (63–250 μm), and silt-/clay-sized particles (< 63 μm) was studied in grassland soils along an elevation gradient in the Northern Limestone Alps of Germany. This was accompanied by an analysis of earthworm abundance and biomass according to different ecological niches. The SOC and N stocks increased with elevation and were associated with relatively high proportions of water-stable macroaggregates due to high contents of exchangeable Ca2+ and Mg2+. At lower elevations, earthworms appeared to act as catalyzers for a higher microaggregate formation. Thus, SOC stabilization by aggregate formation in the studied soils is a result of a joined interaction of organic matter and Ca2+ as binding agents for soil aggregates (higher elevations), and the earthworms that act as promoters of aggregate formation through the secretion of biogenic carbonates (low elevation). Our study highlights the importance of aggregate-related factors as potential indices to evaluate the SOC storage potential in other mountainous grassland soils.Graphical abstract
<p>Alpine and pre-alpine grassland soils in Bavaria provide important ecosystem services and are hotspots for soil organic carbon (SOC) storage.&#160; However, information on the underlying factors that control SOC stabilization via soil aggregation is limited. In three grassland soils with the same parent material but at different elevation (Fendt: 600 m.a.s.l, Graswang: 860 m a.s.l and Esterberg: 1,260 m a.s.l), we studied the soil aggregate distribution and associated SOC according to aggregate size classes (large-macroaggregates > 2,000 &#181;m, small-macroaggregates 250-2000 &#181;m, microaggregates 63-250 &#181;m, silt plus clay particles <63 &#181;m). Furthermore, the biomass and abundance of different ecological groups of earthworms were determined. Our results showed an increase in SOC contents and aggregate stability with elevation. SOC and N stocks of bulk soils showed the same trend as OC contents in aggregates.&#160; Principal component analysis revealed that carbonates, SOC, aboveground plant biomass and the earthworm biomass are the main facilitating agents of aggregation and SOC and N storage in grassland soils of the Northern Limestone Alps of Germany</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.