Mical is a reduction-oxidation (redox) enzyme that functions as an unusual F-actin disassembly factor during Drosophila development. Although three Molecule interacting with CasL (MICAL) proteins exist in vertebrate species, their mechanism of action remains poorly defined and their role in vivo unknown. Here, we report that vertebrate MICAL-1 regulates the targeting of secretory vesicles containing immunoglobulin superfamily cell adhesion molecules (IgCAMs) to the neuronal growth cone membrane through its ability to control the actin cytoskeleton using redox chemistry, thereby maintaining appropriate IgCAM cell surface levels. This precise regulation of IgCAMs by MICAL-1 is essential for the laminaspecific targeting of mossy fibre axons onto CA3 pyramidal neurons in the developing mouse hippocampus in vivo. These findings reveal the first in vivo role for a vertebrate MICAL protein, expand the repertoire of cellular functions controlled through MICAL-mediated effects on the cytoskeleton, and provide insights into the poorly characterized mechanisms underlying neuronal protein cell surface expression and lamina-specific axonal targeting.
MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases.
Summary:Purpose: The objective of this investigation was to characterize quantitatively the time-dependent changes in midazolam (MDL) efficacy in the silent period after induction of status epilepticus (SE) in rats. The changes in MDL efficacy were correlated to changes in ex vivo GABA A -receptor expression.Methods: MDL efficacy was quantified by pharmacokineticpharmacodynamic (PK-PD) modeling by using the β-frequency of the EEG as PD end point. Two PK-PD experiments were performed in each animal: the first experiment before and the second experiment at either day 4 or day 14 after SE. SE was induced by repetitive intraperitoneal injections with kainate. GABA Areceptor expression was determined by ex vivo autoradiography with [3 H]flumazenil.
Results:The concentration versus EEG effect relation of midazolam was successfully described by the sigmoidal E max model. The maximal effect on the β-frequency of the EEG (E max ) was reduced to 51.6 ± 35.6% and 25.8 ± 33.7% of the original value at 4 and 14 days after induction of SE. The ex vivo study with [ 3 H]flumazenil showed that the observed reductions in E max were paralleled by a reduction in GABA A -receptor density.Conclusions: The efficacy of MDL is decreased in the silent period after SE, which can be partly accounted for by a reduction in GABA A -receptor density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.