One of the important non-traditional machining processes is Wire Electrical Discharge Machining, used for machining difficult to machine materials like composites and inter-metallic materials. WEDM involves complex physical and chemical process including heating and cooling. Accompanying the development of mechanical industry, the demand for alloy materials having high hardness, toughness and impact resistance are increasing. The WEDM satisfy the present demands of the manufacturing industries such as better finish, low tolerance, higher production rate, miniaturization etc. The consistent quality of parts being machined in WEDM is difficult because the process parameters cannot be controlled effectively. The problem of arriving at the optimum levels of the operating parameters has attracted the attention of the researcher and practicing engineers for a very long time. The objective of the present study was to experimentally investigate the effects of various Wire Electrical Discharge Machining variables on Surface Roughness and Material Removal Rate of AISI 1045 using ANOVA method. Taguchi’s L18 Orthogonal Array was used to conduct experiments, which correspond to randomly chosen different combination of process parameters: wire type, pulse on time, pulse off time, peak current, servo voltage, wire feed rate, flushing pressure each to be varied in three different levels. The surface roughness and material removal rate were selected as output responses for the present investigation. The effect of all the input parameters on the output responses have been analyzed using analysis of variance (ANOVA). The effect of variation in input parameters has been studied on the output responses. Plots of S/N ratio have been used to determine the best relationship between the responses and the input parameters. In other words, the optimum set of input parameters for minimum surface roughness and maximum material removal rate were determined. It has been found that wire type, pulse on time are most significant factors for surface roughness and wire type, pulse on time, pulse off time, wire feed rate are most significant factors for material removal rate. Keywords: Input Parameters, Wire Electric Discharge Machining, ANOVA, Taguchi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.