We formalize the transfer of essential properties of the solution of a differential equation to the solution of a discrete scheme as qualitative stability with respect to the properties. This permits us to motivate some rules (viz. on the order of the difference equation, on the renormalization of the denominator of the discrete derivative, and on nonlocal approximation of nonlinear terms) used in the design of nonstandard finite difference schemes. Extensions of some models are considered, and numerical examples confirming the efficiency of the nonstandard approach are provided.
International audienceModelling the biomechanics of growing trees is a non-classical problem, as the usual framework of structural mechanics does not take into account the evolution of the domain geometry due to growth processes. Incremental approaches have been used in rod theory to bypass this problem and to model the addition of new material points on an existing deformed structure. However, these approaches are based on the explicit time numerical algorithm of an unknown continuous model, and thus, the accuracy of the numerical results obtained cannot be analysed. A new continuous space-time formulation has been recently proposed to model the biomechanical response of growing rods. The aim of this paper is to discretise the corresponding non-linear system of partial differential equations and the linearised system in order to compare the numerical results with analytical solutions of the linearised problem. The finite element method is implemented to compute the space boundary problem and different time integration schemes are considered to solve the associated initial value problem with a special attention to the forward Euler method which is the analogue of the previously used incremental approach. The numerical results point out that the accuracy of the time integration schemes strongly depends on the value of the parameters. The forward Euler method may present slow convergence property and errors with significant orders of magnitude. Nevertheless, attention must be paid to implicit methods since, for specific values of the parameters and large time steps, they may lead to spurious solutions that may come from numerical instabilities. Hence, the second order Heun's method is an interesting alternative even if it is more time consuming
The concept of Hausdorff continuous interval valued functions, developed within the theory of Hausdorff approximations and originaly defined for interval valued functions of one real variable is extended to interval valued functions defined on a topological space X. The main result is that the set H ft (X) of all finite Hausdorff continuous functions on any topological space X is Dedekind order complete. Hence it contains the Dedekind order completion of the set C(X) of all continuous real functions defined on X as well as the Dedekind order completion of the set C b (X) of all bounded continuous functions on X. Under some general assumptions about the topological space X the Dedekind order completions of both C(X) and C b (X) are characterised as subsets of H ft (X). This solves a long outstanding open problem about the Dedekind order completion of C(X). In addition, it has major applications to the regularity of solutions of large classes of nonlinear PDEs.
This work is the numerical analysis and computational companion of the paper by Kamgang and Sallet (Math. Biosc. 213 (2008), pp. 1-12) where threshold conditions for epidemiological models and the global stability of the disease-free equilibrium (DFE) are studied. We establish a discrete counterpart of the main continuous result that guarantees the global asymptotic stability (GAS) of the DFE for general epidemiological models. Then, we design nonstandard finite difference (NSFD) schemes in which the Metzler matrix structure of the continuous model is carefully incorporated and both Mickens' rules (World Scientific, Singapore, 1994) on the denominator of the discrete derivative and the nonlocal approximation of nonlinear terms are used in an innovative way. As a result of these strategies, our NSFD schemes are proved to be dynamically consistent with the continuous model, i.e., they replicate their basic features, including the GAS of the DFE, the linear stability of the endemic equilibrium (EE), the positivity of the solutions, the dissipativity of the system, and its inherent conservation law. The general analysis is made detailed for the MSEIR model for which the NSFD theta method is implemented, with emphasis on the computational aspects such as its convergence, or local truncation error. Numerical simulations that illustrate the theory are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.