Waterflood implementation accounts for more than half of the oil production worldwide. Despite the observations and extensive research from a large number of floods and thousands of simulation studies, managing waterfloods and Enhanced Oil Recovery (EOR) floods is still a technical challenge. A major contributor to this challenge are waterflood induced fractures (WIF). Managing waterfloods is a multivariable problem although WIF are one aspect, it is by no means the only controlling factor.The best evidence that WIF are one of the main factors controlling flow in reservoirs is the insensitivity of injection pressure to injection rates. With our experience, in hundreds of waterfloods, we have frequently observed this phenomenon in the field data. If fluid flow depended on diffusive Darcy flow alone, we would expect higher injection rates with higher injection pressures. However, it is common to observed relatively constant injection pressures over a wide range of water injection rates. Rapid well communication and changes in water cuts that vary with injection rates also support an interpretation of high permeability induced fractures between injector and producer. In some reservoirs, interwell tracer data can be used to determine the influence of induced fracture features. The interwell tracers usually show very fast water movement.Induced fractures in waterfloods and EOR projects can be caused by a number of mechanisms such as but not limited to, pressure depletion, changing pressure regimes, thermal effects, or plugging effects. These fractures can either be beneficial to the reservoir performance or effect performance negatively. Benefits include improved injectivity and increased throughput of the displacing fluid. Negative effects can come in the form of reduced volumetric sweep efficiency, impaired ultimate recovery or injected fluid losses out of zone.Case studies, theory, and available literature from Western Canada will be reviewed in order to suggest and improve reservoir management strategies for waterfloods. We have completed hundreds of waterflood feasibility, waterflood management and EOR flood studies worldwide and continue to be amazed and humbled by the complexity that many waterfloods and EOR floods exhibit due to induced fracturing. WIF and EOR induced fractures (EIF) are common and should be analysed to optimize production. Growth of the WIF, response to waterflood with the presence of WIF, implication of WIF and reservoir management are the main areas which will be addressed.
A successful waterflood can be implemented in a multi-layered tight oil reservoir developed with horizontal multi-fractured wells. This paper forecasts the recovery factor that can be achieved in such a reservoir as well as discusses the challenges of analyzing and modelling tight oil reservoirs developed with multi-fractured horizontal wells.The Bakken/Three Forks reservoir is composed of low permeability multi-layered silts/shales. With some unconventional reservoirs that are hydraulically fractured, a phenomenon exists whereby material balance and simulation indicate pressure support from a water source that is not always obvious. This phenomenon is believed to be related to the multi-layered silts/shales in the reservoir and is not typically seen in simulation of conventional higher permeability reservoirs (K air >10 mD). Although, the exact petrophysical nature of the silts/shale reservoir layers in this project are not well defined at this time, a successful production history match can be achieved by incorporating their input into a simulation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.