Cytotoxic T lymphocytes are effector CD8+ T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1 −/− cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1 −/− CD8+ T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1 −/−, but not Nfatc2 −/− CD8+ T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.
Dendritic cells “patrol” the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens.
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to protect the human body against cancer. Ca is a key metabolic factor for lymphocyte function and cancer homeostasis. We analysed the Ca dependence of CTL and NK cell cytotoxicity against cancer cells and found that CTLs have a bell-shaped Ca dependence with an optimum for cancer cell elimination at rather low [Ca ] (23-625 μm) and [Ca ] (122-334 nm). This finding predicts that a partial inhibition of Orai1 should increase (rather than decrease) cytotoxicity of CTLs at [Ca ] higher than 625 μm. We tested this hypothesis in CTLs and indeed found that partial down-regulation of Orai1 by siRNA increases the efficiency of cancer cell killing. We found two mechanisms that may account for the Ca optimum of cancer cell killing: (1) migration velocity and persistence have a moderate optimum between 500 and 1000 μm [Ca ] in CTLs, and (2) lytic granule release at the immune synapse between CTLs and cancer cells is increased at 146 μm compared to 3 or 800 μm, compatible with the Ca optimum for cancer cell killing. It has been demonstrated in many cancer cell types that Orai1-dependent Ca signals enhance proliferation. We propose that a decrease of [Ca ] or partial inhibition of Orai1 activity by selective blockers in the tumour microenvironment could efficiently reduce cancer growth by simultaneously increasing CTL and NK cell cytotoxicity and decreasing cancer cell proliferation.
The actin-binding protein profilin1 (PFN1) plays a central role in actin dynamics, which is essential for cytotoxic T lymphocyte (CTL) functions. The functional role of PFN1 in CTLs, however still remains elusive. Here, we identify PFN1 as the only member of the profilin family expressed in primary human CD8 T cells. Using in vitro assays, we find that PFN1 is a negative regulator of CTL-mediated elimination of target cells. Furthermore, PFN1 is involved in activation-induced lytic granule (LG) release, CTL migration and modulation of actin structures at the immunological synapse (IS). During CTL migration, PFN1 modulates the velocity, protrusion formation patterns and protrusion sustainability. In contrast, PFN1 does not significantly affect migration persistence and the rates of protrusion emergence and retraction. Under in vitro conditions mimicking a tumor microenvironment, we show that PFN1 downregulation promotes CTL invasion into a 3D matrix, without affecting the viability of CTLs in a hydrogen peroxide-enriched microenvironment. Highlighting its potential relevance in cancer, we find that in pancreatic cancer patients, PFN1 expression is substantially decreased in peripheral CD8 T cells. Taken together, we conclude that PFN1 is a negative regulator for CTL-mediated cytotoxicity and may have an impact on CTL functionality in a tumor-related context.
Highlights d Cytotoxic T cells form a synapse-like structure during transcellular migration d This diapedesis synapse is enhanced by fractalkine and results in ICAM-1 clustering d This clustering induces the endothelial secretory machinery by recruiting SNAP23 d SNAP23 mediates the synaptic release of chemokines to trigger transcellular migration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.