BackgroundPancreatic ductal adenocarcinoma has proven to be one of the most chemo-resistant among all solid organ malignancies. Several mechanisms of resistance have been described, though few reports of strategies to overcome this chemo-resistance have been successful in restoring sensitivity to the primary chemotherapy (gemcitabine) and enter the clinical treatment arena.MethodsWe examined the ability of cellular arginine depletion through treatment with PEG-ADI to alter in vitro and in vivo cytotoxicity of gemcitabine. The effect on levels of key regulators of gemcitabine efficacy (e.g. RRM2, hENT1, and dCK) were examined.ResultsCombination of PEG-ADI and gemcitabine substantially increases growth arrest, leading to increased tumor response in vivo. PEG-ADI is a strong inhibitor of the gemcitabine-induced overexpression of ribonucleotide reductase subunit M2 (RRM2) levels both in vivo and in vitro, which is associated with gemcitabine resistance. This mechanism is through the abrogation of the gemcitabine-mediated inhibitory effect on E2F-1 function, a transcriptional repressor of RRM2.ConclusionThe ability to alter gemcitabine resistance in a targeted manner by inducing metabolic stress holds great promise in the treatment of advanced pancreatic cancer.
Background: Pancreatic ductal adenocarcinoma has proven to be one of the most chemo-resistant among all solid organ malignancies. Several mechanisms of resistance have been described, though few reports of strategies to overcome this chemo-resistance have been successful in restoring sensitivity to the primary chemotherapy (gemcitabine) and enter the clinical treatment arena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.