This paper presents a novel voxel-based method for texture analysis of brain images. Texture analysis is a powerful quantitative approach for analyzing voxel intensities and their interrelationships, but has been thus far limited to analyzing regions of interest. The proposed method provides a 3D statistical map comparing texture features on a voxel-by-voxel basis. The validity of the method was examined on artificially generated effects as well as on real MRI data in Alzheimer's Disease (AD). The artificially generated effects included hyperintense and hypointense signals added to T1-weighted brain MRIs from 30 healthy subjects. The AD dataset included 30 patients with AD and 30 age/sex matched healthy control subjects. The proposed method detected artificial effects with high accuracy and revealed statistically significant differences between the AD and control groups. This paper extends the usage of texture analysis beyond the current region of interest analysis to voxel-by-voxel 3D statistical mapping and provides a hypothesis-free analysis tool to study cerebral pathology in neurological diseases.
Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain.Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction.Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed.Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS.
This paper presents a novel rotation invariant method for texture classification based on local frequency components. The local frequency components are computed by applying 1-D Fourier transform on a neighboring function defined on a circle of radius R at each pixel. We observed that the low frequency components are the major constituents of the circular functions and can effectively represent textures. Three sets of features are extracted from the low frequency components, two based on the phase and one based on the magnitude. The proposed features are invariant to rotation and linear changes of illumination. Moreover, by using low frequency components, the proposed features are very robust to noise. While the proposed method uses a relatively small number of features, it outperforms state-of-the-art methods in three well-known datasets: Brodatz, Outex, and CUReT. In addition, the proposed method is very robust to noise and can remarkably improve the classification accuracy especially in the presence of high levels of noise.
This paper presents a method for robust volumetric texture classification. It also proposes 2D and 3D gradient calculation methods designed to be robust to imaging effects and artifacts. Using the proposed 2D method, the gradient information is extracted on the XYZ orthogonal planes at each voxel and used to form a local coordinate system. The local coordinate system and the local 3D gradient computed by the proposed 3D gradient calculator are then used to define volumetric texture features. It is shown that the presented gradient calculation methods can be efficiently implemented by convolving with 2D and 3D kernels. The experimental results demonstrate that the proposed gradient operators and the texture features are robust to imaging effects and artifacts, such as blurriness and noise in 2D and 3D images. The proposed method is compared with three state-of- the-art volumetric texture classification methods the 3D gray level cooccurance matrix, 3D local binary patterns, and second orientation pyramid on magnetic resonance imaging data of the brain. The experimental results show the superiority of the proposed method in accuracy, robustness, and speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.