Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this ‘keystone species’ and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Microphytobenthos (MPB), typically comprised mainly of diatoms, is a key contributor to nearshore energy flow and nutrient cycles. Deposit-feeding invertebrates are known to alter the structure and activity of MPB. The eastern mud snail Ilyanassa obsoleta can reach extremely high densities in estuaries of the northwestern Atlantic, and their deposit-feeding and locomotion strongly influence other invertebrates and microbes. Our objective was to explore quantitative and qualitative effects of this keystone deposit-feeder on diatoms of intertidal sediments. We gathered snails from mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. DNA metabarcoding allowed us to characterize diatom assemblages of ingested sediments and feces. We noted selective feeding such that reduction in MPB biomass with gut passage was difficult to quantify. Diatom α-diversity was reduced with gut passage in snails from both sedimentary regimes. Mudflat and sandflat diatom assemblages were distinct and differed markedly between feces and sediment in mud-feeding snails, whereas the difference in sand-feeding snails was minor. The sandy habitat was dominated by a mix of epipelic and epipsammic diatoms. In contrast, mudflat samples were dominated by epipelic and planktonic diatoms. Compositional differences between sediment and feces reflected preferential removal of planktonic taxa. Our results suggest the importance of phytodetritus to the mud snail diet, particularly in hydrodynamically quiescent environments. Due to the natural spatial patchiness of the snails and the capacity for rapid microbial recolonization, field experiments are recommended to determine whether MPB community changes attributed to gut passage are manifested at the landscape scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.