The yeast centrosome or Spindle Pole Body (SPB) is an organelle situated in the nuclear membrane, where it nucleates spindle microtubules and acts as a signaling hub. Various studies have explored the effects of forcing individual proteins to interact with the yeast SPB, however no systematic study has been performed. We used synthetic physical interactions to detect proteins that inhibit growth when forced to associate with the SPB. We found the SPB to be especially sensitive to relocalization, necessitating a novel data analysis approach. This novel analysis of SPI screening data shows that regions of the cell are locally more sensitive to forced relocalization than previously thought. Furthermore, we found a set of associations that result in elevated SPB number and, in some cases, multi-polar spindles. Since hyper-proliferation of centrosomes is a hallmark of cancer cells, these associations point the way for the use of yeast models in the study of spindle formation and chromosome segregation in cancer.
Mollusc seashells grow through the local deposition and calcification of material at the shell opening by a soft and thin organ called the mantle. Through this process, a huge variety of shell structures are formed. Previous models have shown that these structural patterns can largely be understood by examining the mechanical interaction between the deformable mantle and the rigid shell aperture to which it adheres. In this paper we extend this modelling framework in two distinct directions. For one, we incorporate a mechanical feedback in the growth of the mollusc. Second, we develop an initial framework to couple the two primary and orthogonal modes of pattern formation in shells, which are termed antimarginal and commarginal ornamentation. In both cases we examine the change in shell morphology that occurs due to the different mechanical influences and evaluate the hypotheses in light of the fossil record.
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell–cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Background Colony growth on solid media is a simple and effective measure for high-throughput genomic experiments such as yeast two-hybrid, synthetic dosage lethality and Synthetic Physical Interaction screens. The development of robotic pinning tools has facilitated the experimental design of these assays, and different imaging software can be used to automatically measure colony sizes on plates. However, comparison to control plates and statistical data analysis is often laborious and pinning issues or plate specific growth effects can lead to the detection of false-positive growth defects. Results We have developed ScreenGarden, a shinyR application, to enable easy, quick and robust data analysis of plate-based high throughput assays. The code allows comparisons of different formats of data and different sized arrays of colonies. A comparison of ScreenGarden with previous analysis tools shows that it performs, at least, equivalently. The software can be run either via a website or offline via the RStudio program; the code is available and can be modified by expert uses to customise the analysis. Conclusions ScreenGarden provides a simple, fast and effective tool to analyse colony growth data from genomic experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.