Software Defined Networking (SDN) has been proposed as a drastic shift in the networking paradigm, by decoupling network control from the data plane and making the switching infrastructure truly programmable. The key enabler of SDN, OpenFlow, has seen widespread deployment on production networks and its adoption is constantly increasing. Although openness and programmability are primary features of OpenFlow, security is of core importance for real-world deployment. In this work, we perform a security analysis of OpenFlow using STRIDE and attack tree modeling methods, and we evaluate our approach on an emulated network testbed. The evaluation assumes an attacker model with access to the network data plane. Finally, we propose appropriate counter-measures that can potentially mitigate the security issues associated with OpenFlow networks. Our analysis and evaluation approach are not exhaustive, but are intended to be adaptable and extensible to new versions and deployment contexts of OpenFlow.
Modern Internet applications, from HD video-conferencing to health monitoring and remote control of power-plants, pose stringent demands on network latency, bandwidth and availability. Centralized inter-domain routing brokers is an approach to support such applications and provide inter-domain guarantees, enabling new avenues for innovation. These entities centralize routing control for missioncritical traffic across domains, working in parallel to BGP. In this work, we propose using IXPs as natural points for stitching interdomain paths under the control of inter-domain routing brokers.To evaluate the potential of this approach, we first map the global substrate of inter-IXP pathlets that IXP members could offer, based on measurements for 229 IXPs worldwide. We show that using IXPs as stitching points has two useful properties. Up to 91% of the total IPv4 address space can be served by such inter-domain routing brokers when working in concert with just a handful of large IXPs and their associated ISP members. Second, path diversity on the inter-IXP graph increases by up to 29 times, as compared to current BGP valley-free routing. To exploit the rich path diversity, we introduce algorithms that inter-domain routing brokers can use to embed paths, subject to bandwidth and latency constraints. We show that our algorithms scale to the sizes of the measured graphs and can serve diverse simulated path request mixes. Our work highlights a novel direction for SDN innovation across domains, based on logically centralized control and programmable IXP fabrics.
How many links can be cut before a network is bisected? What is the maximal bandwidth that can be pushed between two nodes of a network? These questions are closely related to network resilience, path choice for multipath routing or bisection bandwidth estimations in data centers. The answer is quantified using metrics such as the number of edge-disjoint paths between two network nodes and the cumulative bandwidth that can flow over these paths. In practice though, such calculations are far from simple due to the restrictive effect of network policies on path selection. Policies are set by network administrators to conform to service level agreements, protect valuable resources or optimize network performance. In this work, we introduce a general methodology for estimating lower and upper bounds for the policy-compliant path diversity and bisection bandwidth between two nodes of a network, effectively quantifying the effect of policies on these metrics. Exact values can be obtained if certain conditions hold. The approach is based on regular languages and can be applied in a variety of use cases.
Internet eXchange Points (IXPs) are core components of the Internet infrastructure where Internet Service Providers (ISPs) meet and exchange traffic. During the last few years, the number and size of IXPs have increased rapidly, driving the flattening and shortening of Internet paths. However, understanding the present status of the IXP ecosystem and its potential role in shaping the future Internet requires rigorous data about IXPs, their presence, status, participants, etc. In this work, we do the first cross-comparison of three well-known publicly available IXP databases, namely of PeeringDB, Euro-IX, and PCH. A key challenge we address is linking IXP identifiers across databases maintained by different organizations. We find different AS-centric versus IXP-centric views provided by the databases as a result of their data collection approaches. In addition, we highlight differences and similarities w.r.t. IXP participants, geographical coverage, and co-location facilities. As a side-product of our linkage heuristics, we make publicly available the union of the three databases, which includes 40.2 % more IXPs and 66.3 % more IXP participants than the commonly-used PeeringDB. We also publish our analysis code to foster reproducibility of our experiments and shed preliminary insights into the accuracy of the union dataset.
In this work, we propose utilizing the rich connectivity between IXPs and ISPs for inter-domain path stitching, supervised by centralized QoS brokers. In this context, we highlight a novel abstraction of the Internet topology, i.e., the inter-IXP multigraph composed of IXPs and paths crossing the domains of their shared member ISPs. This can potentially serve as a dense Internet-wide substrate for provisioning guaranteed end-to-end (e2e) services with high path diversity and global IPv4 address space reach. We thus map the IXP multigraph, evaluate its potential, and introduce a rich algorithmic framework for path stitching on such graph structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.