Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis caused by traumatic implantation of many species of black fungi. Due to the refractoriness of some cases and common recurrence of CBM, a more effective and less time-consuming treatment is mandatory. The aim of this study was to identify compounds with in vitro antifungal activity in the Pathogen Box® compound collection against different CBM agents. Synergism of these compounds with drugs currently used to treat CBM was also assessed. An initial screening of the drugs present in this collection at 1 μM was performed with a Fonsecaea pedrosoi clinical strain according to the EUCAST protocol. The compounds with activity against this fungus were also tested against other seven etiologic agents of CBM (Cladophialophora carrionii, Phialophora verrucosa, Exophiala jeanselmei, Exophiala dermatitidis, Fonsecaea monophora, Fonsecaea nubica, and Rhinocladiella similis) at concentrations ranging from 0.039 to 10 μM. The analysis of potential synergism of these compounds with itraconazole and terbinafine was performed by the checkerboard method. Eight compounds inhibited more than 60% of the F. pedrosoi growth: difenoconazole, bitertanol, iodoquinol, azoxystrobin, MMV688179, MMV021013, trifloxystrobin, and auranofin. Iodoquinol produced the lowest MIC values (1.25-2.5 μM) and MMV688179 showed MICs that were higher than all compounds tested (5->10 μM). When auranofin and itraconazole were tested in combination, a synergistic interaction (FICI = 0.37) was observed against the C. carrionii isolate. Toxicity analysis revealed that MMV021013 showed high selectivity indices (SI � 10) against the fungi tested. In summary, auranofin, iodoquinol, and MMV021013 were identified as promising compounds to be tested in CBM models of infection.
BackgroundChromoblastomycosis (CBM) is a difficult-to-treat chronic subcutaneous mycosis. In Brazil, the main agent of this disease is Fonsecaea pedrosoi, which is phenotypically very similar to other Fonsecaea species, differing only genetically. The correct species identification is relevant since different species may differ in their epidemiologic aspects, clinical presentation, and treatment response.Methodology/Principal findingsPartial sequencing of the internal transcribed spacer (ITS) was used to identify twenty clinical isolates of Fonsecaea spp. Their in vitro antifungal susceptibility was determined using the broth microdilution method, according to the M38-A2 protocol. Amphotericin B (AMB), flucytosine (5FC), terbinafine (TRB), fluconazole (FLC), itraconazole (ITC), ketoconazole (KTC), posaconazole (POS), voriconazole (VRC), ravuconazole (RVC), caspofungin (CAS), and micafungin (MFG) were tested. The association between ITC/TRB, AMB/5FC, and ITC/CAS was studied by the checkerboard method to check synergism. The available patients’ data were correlated with the obtained laboratory results. Fonsecaea monophora (n = 10), F. pedrosoi (n = 5), and F. nubica (n = 5) were identified as CBM’ agents in the study. TRB and VRC were the drugs with the best in vitro activity with minimal inhibitory concentrations (MIC) lower than 0.25 mg/L. On the other hand, FLC, 5FC, AMB, and MFG showed high MICs. The AMB/5FC combination was synergistic for three F. monophora strains while the others were indifferent. Patients had moderate or severe CBM, and ITC therapy was not sufficient for complete cure in most of the cases, requiring adjuvant surgical approaches.Conclusions/SignificanceF. monophora, the second most frequent Fonsecaea species in South America, predominated in patients raised and born in Rio de Janeiro, Brazil, without cerebral involvement in these cases. TRB, VRC, and the AMB/5FC combination should be further investigated as a treatment option for CBM.
Tinea capitis caused by Microsporum audouinii is reported herein from two Brazilian schoolchildren, which are brothers. Arthroconidia were evidenced on direct examination of scalp hair, and a fungus of the genus Microsporum was isolated from cultures of each patient. The isolated fungi were classified as M. audouinii by visualization of species-specific structures, including: pectinate hyphae, chlamydospores, and fusiform macroconidia, sterile growth with characteristic brown pigment in rice grains, and through DNA sequencing of the internal transcriber spacer region. Patients were refractory to ketoconazole, but the two cases had a satisfactory response to oral terbinafine. All M. audouinii infections described in this century were reviewed, and to our knowledge, this is the first literature description of this species from South America. Misidentification of M. audouinii with Microsporum canis can occur in this area, leading to erroneous data about the occurrence of this species.
A comparative study of four different staining methods for estimation of live yeast form cells of Paracoccidioides brasiliensis was carried out. The staining methods used were fluorescent staining, vital dye exclusion tests with erythrosin B and by Janus green and lactophenol cotton blue staining. Colony forming units (cfu) of the yeast form of eight P. brasiliensis isolates on brain heart infusion agar (BHIA) supplemented with 4% horse serum plus 5% P. brasiliensis cell extract (BHIA + HS + EXT) were examined for reliability of staining in determining the number of live fungal units in eight different isolates. Cfu on BHIA + HS + EXT plates showed an excellent plating efficiency over 96% in all isolates tested. The percentage of the live cells indicated by fluorescent staining (FL) or vital dye exclusion test with erythrosin B (EB) or Janus green (JG-1) was lower than that of cfu. By contrast, the percentage due to modified dye exclusion test with Janus green (JG-2) and that due to lactophenol cotton blue staining (LPCB) showed a close correration to that of cfu. Our results indicate that the modified dye exclusion test with Janus green and lactophenol cotton blue staining are useful for estimating cell viability of yeast form cells of P. brasiliensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.