Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.
(1) Background: Thermoplastic materials are not inert and subject to changes in the oral environment, which affect their surface quality. Color stability and topographic characteristics of clear thermoplastic appliances are critical considerations. The study aimed to evaluate the optical changes and surface topography of different thermoplastic materials related to staining beverages and cleaning agents. (2) Methods: Thermoplastic polyethylene terephthalate glycol (PET-G) material specimens were selected for the study: S (Duran, Scheu-Dental GmbH, Iserlohn, Germany), D (Biolon, Dreve Dentamid GmbH, Unna, Germany), and B (Crystal, Bio Art Dental Equipment, Sao Carlos, Brazil). Four different media were involved for immersion: coffee (C) and black tea (T) at 55 °C, Coca-Cola (K) at 5 °C, and distilled water (W) at 22 °C. As for cleaning, chemical options and mechanical brushing were selected (P-powder, T-tablets, and X-brushing). Color changes, and mean surface roughness were measured at 24 h, 48 h, and after 7 days. Statistical analysis was performed. After the testing period, atomic force microscopy (AFM) analyses and SEM images were registered in order to characterize the surface topography. (3) Results: Quantitative color change evaluations revealed a slight change in color after 24 h and an extremely marked change after 48 h, respective 7 days. Mean roughness values are kept below the clinically acceptable limit of 0.20 µm for all samples. Related to mean nanoroughness values Sa, and 3D evaluations of the surface quality, Biolon samples have demonstrated the most constant behavior, while Crystal samples are visibly influenced by water immersion. Related to the cleaning method, the topography of Duran samples was influenced by mechanical brushing. (4) Conclusions: Nanoscale investigations provided high accuracy and more realistic surface quality examinations of the examined samples compared to profilometry. Both SEM and AFM should be used for a more detailed description of the surface topography.
Dental ceramic restorations are widely used in restorative dentistry. However, these restorations can be affected once cemented in the oral cavity by several factors. How can conventional surface treatments, such as glazing and mechanical polishing, diminish the effects of aging? The purpose of this in vitro study was to evaluate the effect of thermocycling and conventional surface treatments on the surface roughness and microhardness of three types of glass-ceramics by using a profilometer, scanning electron microscopy (SEM), atomic force microscopy (AFM), and a microhardness tester. Three types of ceramic systems (zirconia reinforced lithium silicate glass-ceramic, lithium disilicate glass-ceramic, and feldspathic glass-ceramic) (n = 48) were prepared. The samples were subjected to thermocycling for 10,000 cycles. Surface roughness was evaluated numerically using a profilometer and visually by using SEM and AFM. Microhardness was performed using a microhardness tester. The data were interpreted using the ANOVA test, and the results were correlated using Pearson’s correlation formula (r). Significant differences were found before and after thermocycling for the Ra (p < 0.01) and Rz (p < 0.05) parameters. As well, differences between glazed and polished surfaces were significant before and after thermocycling for surface roughness and microhardness (p < 0.05). A correlation was made between average surface roughness and microhardness (r = −460) and for the maximum surface roughness and microhardness (r = −606). Aging increases the roughness and decreases in time the microhardness. The tested ceramic systems behaved differently to the aging and surface treatments. Surface treatments had a significant impact on the microhardness and surface characteristics. The glazed groups were reported with higher surface roughness and lower microhardness when compared to the polished groups before and after thermocycling. The measuring roughness techniques determine the scale-dependent values for the Ra (Sa) and Rz (Sq) parameters. Thermocycling almost doubled the surface roughness for all the tested samples. Microhardness decreased only for the Celtra glazed samples. Nano-roughness increased the values for Vita and slightly for Emax. Thermocycling had little effect on Emax ceramic and a more significant impact on Celtra Press ceramic.
The accuracy of newly developed ceramic materials is still being studied. Marginal and internal adaptation are known factors that have an essential impact on the long term success of dental restorations. The aim of this in vitro study was to evaluate the marginal and internal fit of heat-pressed and milled monolithic glass-ceramic restorations based on their ceramic type, processing technique, and in vitro thermocycling. Thirty-two crowns were studied and divided into four groups (n = 8), according to the ceramic material (feldspathic glass-ceramic (F) and zirconia reinforced lithium silicate glass-ceramic (ZLS)) and to their technological obtaining processes (milling (M) and heat-pressing (P)). A typodont preparation was scanned with a D2000 3D scanner to obtain identical 32 resin 3D-printed abutment teeth. Marginal and internal gaps were measured using the silicone replica technique under 40× magnification. The crowns were further cemented and thermally aged for 10,000 cycles After cementation and thermocycling of the samples, marginal and internal gaps were assessed using micro-CT (micro-computed tomography)) analysis. Data were statistically analyzed using statistical tests. Significant differences were found before and after cementation and thermocycling among the tested materials (p < 0.05). Related to technological processing, significant differences were seen in the marginal area between FP and FM (p < 0.05) Significant differences were also found in the axial and occlusal areas between the ZLSP and ZLSM. Thermocycling and cementation did not have a significant effect on the tested materials (p < 0.05). The technological processes influenced the marginal and internal fit of the crowns in favor of the CAD/CAM (computer aided design/computer aided manufacturing)technologies. Thermal aging had little effect on marginal adaptability; it increased the values for all the tested samples in a small way, but the values remained in their clinically acceptable range for all of the crowns.
The development of various dental glass-ceramic materials and the evolution of novel processing technologies lead to an essential change in the clinical and technical workflow. The long-term success of a dental restoration treatment is defined by its durability, which is directly influenced by the oral environment. This study’s purpose was to evaluate the artificial aging behavior of nanostructured, respective microstructured ceramics related to surface topography, roughness, and optical properties. Six monolithic restoration materials were selected: milled lithium disilicate glass-ceramic (LDS-M) MT (medium translucency), hot-pressed lithium disilicate glass-ceramic (LDS-P) MT and HT (high translucency), milled zirconia-reinforced lithium silicate ceramic (ZLS-M) MT and hot-pressed zirconia-reinforced lithium silicate ceramic (ZLS-P) MT and HT, resulting n = 96 surfaces. All the samples were artificially aged by thermal cycling, and all investigations were made before and after thermal cycling. In terms of optical properties, differences recorded between ZLS and LDS ceramics are not significant. Thermal cycling increases the translucency of ZLS and LDS glass-ceramic materials significantly, with the most harmful effect on the pressed and polished samples. Micro- and nano roughness are significantly influenced by in vitro aging and a negative correlation was recorded. Glazed samples are characterized by significant rougher surfaces for all types of materials. On nanolevel, ZLS materials are significantly smoothed by thermal cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.