Background SARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. Methods We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. Results Anti-spike IgG levels remained stably detected after a positive result, e.g., in 94% (95% credibility interval, CrI, 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post first PCR-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. Higher maximum observed anti-nucleocapsid titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. Conclusion SARS-CoV-2 anti-nucleocapsid antibodies wane within months, and faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
Background Natural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. Methods In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results 13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. Conclusion Natural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.
Annealing, or heat treatment, has traditionally been used as a treatment to improve the strength and stiffness of electrospun materials. Understanding the extent to which annealing can improve the mechanical properties and alter the degradation rate of electrospun polydioxanone filaments could influence the range of its potential clinical applications. In this study, we investigated the effect of annealing electrospun polydioxanone filaments at varying times and temperatures and subsequently subjecting them to in vitro degradation in phosphate buffer saline for up to 6 weeks. Fibre alignment, tensile strength and thermal properties were assessed. It was determined that annealing at 65°C for 3h only marginally improved the tensile strength (9±2%) but had a significant effect on reducing strain and rate of degradation, as well as maintaining fibre alignment within the filament. The filament retained significantly more of its force at failure after 4 weeks (82±15%, compared to 61±20% for non annealed filaments) and after 6 weeks of degradation (81±9%, compared to 55±13% for non annealed filaments). Conversely, annealing filaments at 75°C improved the initial tensile strength of the filament (17±6%), but over 6 weeks, both samples annealed at 75°C and 85°C otherwise performed similarly or mechanically worse than those not annealed. These findings suggest that annealing at low temperatures is more useful as a method to tailor degradation rate than to improve mechanical properties. The ability to modulate the degradation profile with annealing may become useful to tailor the properties of electrospun materials without altering the chemistry of the polymer used. This might better match the degradation of the implant and gradual loss of mechanical properties with the new matrix deposition within the structure, enabling multiple regenerative strategies within a single biomaterial system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.