Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA),1,2 congenital asplenia,3 and T-cell leukemia.4 Yet how mutations in such ubiquitously expressed proteins result in cell-type and tissue specific defects remains a mystery.5 Here, we show that GATA1 mutations that reduce full-length protein levels of this critical hematopoietic transcription factor can cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can similarly reduce translation of GATA1 mRNA - a phenomenon that appears to result from this mRNA having a higher threshold for initiation of translation. In primary hematopoietic cells from patients with RPS19 mutations, a transcriptional signature of GATA1 target genes is globally and specifically reduced, confirming that the activity, but not the mRNA level, of GATA1 is reduced in DBA patients with ribosomal protein mutations. The defective hematopoiesis observed in DBA patients with ribosomal protein haploinsufficiency can be at least partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations in ubiquitous ribosomal proteins can result in human disease.
Diamond-Blackfan anemia (DBA) is a hypoplastic anemia characterized by impaired production of red blood cells, with approximately half of all cases attributed to ribosomal protein gene mutations. We performed exome sequencing on two siblings who had no known pathogenic mutations for DBA and identified a mutation in the gene encoding the hematopoietic transcription factor GATA1. This mutation, which occurred at a splice site of the GATA1 gene, impaired production of the full-length form of the protein. We further identified an additional patient carrying a distinct mutation at the same splice site of the GATA1 gene. These findings provide insight into the pathogenesis of DBA, showing that the reduction in erythropoiesis associated with the disease can arise from causes other than defects in ribosomal protein genes. These results also illustrate the multifactorial role of GATA1 in human hematopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.