Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Several stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axr1-3) or ethylene (etr1-1) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles from independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans distal to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development.
Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Severa1 stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axrl-3) or ethylene (etr7-I) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles fmm independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans dista1 to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.