This study investigates the use of shape memory polymers (SMPs) as a substrate for a self-coiling cochlear implant electrode array and investigates the self-coiling ability of a sham probe micromachined atop such a substrate. Through the use of a self-coiling cochlear implant, the capability to avoid contact with the tissue of the cochlear duct is investigated via the insertion of a dummy device into a model cochlea heated to an ambient 34 °C. Finally, a prototype straightening and insertion tool is developed for automated retraction and locking of the coiled shape into a bar geometry. Preliminary demonstration of the deployment of self-coiling cochlear implants is shown and paves the way for future studies focused on using histological analysis of the cochlear wall tissue to compare the degree of trauma resulting from linear cochlear implant arrays versus the self-coiling, non-contact probes demonstrated herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.