Platinum catalysts are reported for the direct, low-temperature, oxidative conversion of methane to a methanol derivative at greater than 70 percent one-pass yield based on methane. The catalysts are platinum complexes derived from the bidiazine ligand family that are stable, active, and selective for the oxidation of a carbon-hydrogen bond of methane to produce methyl esters. Mechanistic studies show that platinum(II) is the most active oxidation state of platinum for reaction with methane, and are consistent with reaction proceeding through carbon-hydrogen bond activation of methane to generate a platinum-methyl intermediate that is oxidized to generate the methyl ester product.
Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.
A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate ( approximately 43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10(-7) mole per cubic centimeter per second and Hg(II) turnover frequency of 10(-3) per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH(3)HgOSO(3)H, 1. Under the reaction conditions, 1 readily decomposes to CH(3)OSO(3)H and the reduced mercurous species, Hg(2)(2+) The catalytic cycle is completed by the reoxidation of Hg(2)(2+) with H(2)SO(4) to regenerate Hg(II) and byproducts SO(2) and H(2)O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.
One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made, greater advances, particularly in developing systems that can utilize O, will be required to develop a practical process that can replace the current energy and capital intensive natural gas conversion process. We believe that this classification scheme will provide the reader with a rapid way to identify systems of interest while providing a deeper appreciation and understanding, both practical and fundamental, of the extensive literature on methane functionalization. The hope is that this could accelerate progress toward meeting this "grand challenge."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.