Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA.
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Rheumatoid arthritis (RA) and other autoimmune inflammatory diseases are examples of imbalances within the immune system (disrupted homeostasis) that arise from the effects of an accumulation of environmental and habitual insults over a lifetime, combined with genetic predispositions. This review compares current immunotherapies—(1) disease-modifying anti-rheumatic drugs (DMARDs) and (2) Janus kinase (JAK) inhibitors (jakinibs)—to a newer approach—(3) therapeutic vaccines (using the LEAPS vaccine approach). The Ligand Epitope Antigen Presentation System (LEAPS) therapies are capable of inhibiting ongoing disease progression in animal models. Whereas DMARDs ablate or inhibit specific proinflammatory cytokines or cells and jakinibs inhibit the receptor activation cascade for expression of proinflammatory cytokines, the LEAPS therapeutic vaccines specifically modulate the ongoing antigen-specific, disease-driving, proinflammatory T memory cell responses. This decreases disease presentation and changes the cytokine conversation to decrease the expression of inflammatory cytokines (IL-17, IL-1(α or β), IL-6, IFN-γ, TNF-α) while increasing the expression of regulatory cytokines (IL-4, IL-10, TGF-β). This review refocuses the purpose of therapy for RA towards rebalancing the immune system rather than compromising specific components to stop disease. This review is intended to be thought provoking and look forward towards new therapeutic modalities rather than present a final definitive report.
Rheumatoid arthritis (RA) can be initiated and driven by immune responses to multiple antigenic epitopes including those in cartilage proteoglycan (PG, aggrecan) and type II collagen. RA is driven by T helper 1 (Th1) or Th17 pro-inflammatory T cell responses. LEAPS (Ligand Epitope Antigen Presentation System) DerG peptide conjugate vaccines were prepared using epitopes from PG that elicit immune responses in RA patients: epitope PG70 (DerG-PG70, also designated CEL-4000) and the citrullinated form of another epitope (PG275Cit). The LEAPS peptides were administered alone or together in Seppic ISA51vg adjuvant to mice with PG G1 domain-induced arthritis (GIA), a mouse model of RA. Each of these LEAPS peptides and the combination modulated the inflammatory response and stopped the progression of arthritis in the GIA mouse model. Despite having a therapeutic effect, the DerG-PG275Cit vaccine did not elicit significant antibody responses, whereas DerG-PG70 (alone or with DerG-PG275Cit) induced both therapy and antibodies. Spleen T cells from GIA mice, vaccinated with the DerG LEAPS peptides, preferentially produced anti-inflammatory (IL-4 and IL-10) rather than pro-inflammatory (IFN-γ or IL-17) cytokines in culture. Similarly, cytokines secreted by CD4+ cells of unvaccinated GIA mice, differentiated in vitro to Th2 cells and treated with either or both DerG vaccine peptides, exhibited an anti-inflammatory (IL-4, IL-10) profile. These results suggest that the two peptides elicit different therapeutic immune responses by the immunomodulation of disease-promoting pro-inflammatory responses and that the combination of the two LEAPS conjugates may provide broader epitope coverage and, in some cases, greater efficacy than either conjugate alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.