The effects of maize-bran phytate and of a polyphenol (tannic acid) on iron absorption from a white-bread meal were tested in 199 subjects. The phytate content was varied by adding different concentrations of phytate-free and ordinary maize bran. Iron absorption decreased progressively when maize bran containing increasing amounts of phytate phosphorous (phytate P) (from 10 to 58 mg) was given. The inhibitory effect was overcome by 30 mg ascorbic acid. The inhibitory effects of tannic acid (from 12 to 55 mg) were also dose dependent. Studies suggested that greater than or equal to 50 mg ascorbic acid would be required to overcome the inhibitory effects on iron absorption of any meal containing greater than 100 mg tannic acid. Our findings indicate that it may be possible to predict the bioavailability of iron in a diet if due account is taken of the relative content in the diet of the major promoters and inhibitors of iron absorption.
The transferrin receptor plays a critical role in iron metabolism by precisely controlling the flow of transferrin iron into body cells. A soluble truncated form of the receptor can be detected in human serum using sensitive immunoassays, and the initial clinical experience with this new measurement indicates that it reflects the total body mass of tissue receptor. Serum receptor levels rise significantly with tissue iron deficiency and the heightened demand for iron associated with expansion of the erythroid marrow. The serum receptor provides a quantitative measure of functional iron deficiency and distinguishes the associated anemia from that of chronic disease. If iron deficiency is excluded, the serum receptor provides a quantitative measure of total erythropoiesis that is more sensitive and less invasive than bone marrow examination currently used to assess red cell precursor mass. Performed in conjunction with serum ferritin measurements, the serum receptor will be useful in establishing the true prevalence of iron deficiency anemia in population studies.
We report here the transplantation of extensively purified "mobilized" peripheral blood CD34Thy-1 hematopoietic stem cells from 22 patients with recurrent or metastatic breast cancer. Patients were mobilized with either high-dose granulocyte colony-stimulating factor (G-CSF) alone or cyclophosphamide plus G-CSE Median purity of the stem cell product at cryopreservation was 95.3% (range, 91.1%-98.3%), and viability was 98.6% (range, 96.5%-100%). After high-dose chemotherapy with carmustine, cisplatin, and cyclophosphamide, CD34+Thy-1 cells at a median dose of 11.3 x 10(5) per kilogram (range, 4.7-163 x 10(5) per kilogram) were infused. No infusion-related toxicity was observed. Neutrophil recovery was prompt, with median absolute neutrophil count >500/microL by day 10 (range, 8-15 days) and >1000/microL by day 11 (range, 8-17 days). Median platelet recovery (>20,000/microL) was observed by day 14 (range, 9-42 days) and >50,000/microL by day 17 (range, 11-49 days). Tumor cell depletion below the limits of detection of a sensitive immunofluorescence-based assay was accomplished in all patients who had detectable tumor cells in apheresis products before processing. Although CD4+ T-cell reconstitution was slow, no unusual infections were observed. Neither early nor late graft failure was observed, and no patient required infusion of unmanipulated backup cells. At a median follow-up of approximately 1.4 years and a maximum follow-up of 2.5 years, 16 of the 22 patients remain alive, with 9 free of disease progression, and have stable blood counts. In summary, highly purified CD34+Thy-1+ cells used as the sole source of the hematopoietic graft result in rapid and sustained hematopoietic engraftment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.